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Abstract 

An increase in the copper pool in body fluids has been related to a number of pathological 

conditions, including infections. Copper ions may affect antibiotics via the formation of 

coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu
2+ 

with 

eight β-lactam antibiotics using UV-Vis spectrophotometry, EPR spectroscopy, and 

electrochemical methods. Penicillin G did not show any detectable interactions with Cu
2+

. 

Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral 

coordination environment of Cu
2+

 with tetragonal distortion, and primary amine group as the site 

of coordinate bond formation. These β-lactams increased the solubility of Cu
2+

 in the phosphate 

buffer. Ceftazidime and Cu
2+ 

formed a complex with a similar geometry and gave rise to an 
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organic radical. Ceftriaxone-Cu
2+

 complex appears to exhibit different geometry. All complexes 

showed 1:1 stoichiometry. Cefaclor reduced Cu
2+

 to Cu
1+

 that further reacted with molecular 

oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the 

presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus 

showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly 

hindered in the presence of copper ions. The interactions with copper ions should be taken into 

account regarding the problem of antibiotic resistance and in the selection of the most efficient 

antimicrobial therapy for patients with altered copper homeostasis. 

Graphical abstract: 
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1. Introduction 

 

Copper is a redox-active metal with capacity to form 4-6 coordinate bonds. The concentration of 

labile copper (various redox-active Cu
2+/1+

 complexes with small ligands) in human blood 

plasma and other fluids is tightly regulated. However, copper is mobilized in infections, 

inflammation, and tissue damage [1,2], as well as in a number of other acute and chronic 

conditions, such as Wilson’s disease, Alzheimer’s disease, diabetes, and neonatal jaundice [3‒5]. 

The potential role of copper in the well-known problem of antibiotics resistance has been pointed 

out recently [6]. Copper ions may directly affect the activity of antibiotics through coordination 

and/or redox interactions [6,7]. It has been observed that Cu
2+

 ions suppress the intestinal 

transport of some cephalosporins [8]. On the other hand, it has been reported that Cu
2+

 may 

promote antimicrobial and anti-inflammatory effects of cephalexin [9]. These effects have been 
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related to the formation of complexes. Interactions of Cu
2+

 with penicillins at low pH have also 

been reported [10,11]. It is worth mentioning that several studies have synthesized complexes of 

cephalosporins and penicillins with Cu
2+

 in organic solvents, with variable successes regarding 

the antimicrobial activity [12‒16]. However, the interactions between copper ions and antibiotics 

under physiological conditions are still poorly understood. Detailed information on such 

interactions may be essential for elucidating the underlying mechanisms of antibiotic resistance 

and for selecting the most efficient therapy for bacterial infections, particularly in patients with 

conditions that are related to increased labile copper pool.   

Herein, we analyzed coordination and redox interactions of Cu
2+

 with β-lactam antibiotics from 

three different classes (Fig. 1): penicillins (penicillin G, ampicillin, and amoxicillin), 

cephalosporins (cephalexin, cefaclor, ceftriaxone, and ceftazidime) and carbapenems 

(meropenem), in the phosphate buffer at physiological pH 7.4. In addition, we applied minimum 

inhibitory concentration (MIC) test to examine the impact of copper ions on the performance of 

β-lactam antibiotics against E. coli and S. aureus. 

 

2. Materials and methods 

2.1. Chemicals 

CuCl2 × 2H2O, antibiotics (reference standard purity), and other chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). All experiments were performed using bidistilled 

deionized ultrapure (18 MΩ) water. Phosphate buffer (50 mM) was prepared using KH2PO4 and 

KOH to adjust pH to 7.4. Stock solutions of antibiotics in the buffer were prepared daily, and 

kept light-protected on ice. Incubation and measurements were conducted in the dark at 293 K. 

2.2. UV-Vis spectrophotometry 

UV-Vis absorption spectra were obtained using 2501 PC Shimadzu spectrophotometer (Kyoto, 

Japan). Sample volume was 1 mL. Scan time was 50 s. Samples were freshly prepared and 

immediately scanned at wavelengths from 800 to 200 nm. 

2.3. Oximetry 

[O2] was determined using a Clark type oxygen electrode (Hansatech Instruments Ltd., King’s 

Lynn, UK), operating with Lab Pro interface and Logger Pro 3 software (Vernier, Beaverton, 

OR, USA). All systems were stirred and recorded for 2–5 min before Cu
2+

 addition to establish 
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the stability of baseline and zero rate of O2 change. Decrease in [O2] was monitored for 30 min 

before the addition of catalase (Sigma-Aldrich; 100 IU/mL). 

2.4. EPR spectroscopy 

Low-T EPR spectra of Cu
2+

 were recorded under non-saturating power conditions, on a Bruker 

Elexsys II E540 spectrometer operating at X-band (9.4 GHz), using the Bruker N2 Temperature 

Controller ER4131VT to maintain T at 110 K. The experimental parameters were: microwave 

power, 3.17 mW; scan time, 100 s; modulation amplitude, 0.5 mT; modulation frequency, 100 

kHz; number of accumulations, 4. All spectra were baseline corrected. Samples were placed in 

quartz cuvettes (Wilmad-LabGlass, Vineland, NJ, USA), and frozen in cold isopentane after 5 

min incubation period. The concentration of copper was 0.2 mM, whereas concentrations of 

antibiotics were 0.2 mM and 0.4 mM. 

2.5. Cyclic voltammetry 

The voltammetric measurements were performed using a potentiostat/galvanostat CHI 760b (CH 

Instruments, Inc, Austin, TX, USA). The electrochemical cell was equipped with: a boron-doped 

diamond electrode (inner diameter of 3 mm; Windsor Scientific LTD, UK), resistivity of 0.075 Ω 

cm, and a boron doping level of 1000 ppm as declared by supplier (working electrode); Ag/AgCl 

(3 M KCl) (reference electrode); and Pt wire of large surface area (counter electrode). 

2.6. MIC assay 

Bacterial strains E. coli ATCC 25922 and S. aureus ATCC 25923 were obtained from American 

Type Culture Collection. Agar plates (Torlak, Belgrade, Serbia) were supplemented with 

antibiotics or antibiotics with equimolar concentration of Cu
2+

. The dilutions were prepared in 

0.9% NaCl and mixed with agar in v/v 1:9. Final concentrations of antibiotics were: 6.25, 12.5, 

25, 50, 62.5, 125, 250, 500, and 1000 μg/mL. The plates were inoculated with a microplate 

replicator. The dilutions were designed to provide an inoculum in the range of 50–200 CFU. 

MIC was defined as the lowest concentration at which no growth was observed following 24 h 

incubation under aerobic conditions at 37°C. All experiments were performed in triplicate. 

 

3. Results and discussion 

Fig. 2 presents UV-Vis spectra of eight β-lactam antibiotics in the absence and presence of Cu
2+

. 

The spectrum of penicillin G did not change in the presence of Cu
2+

 (Fig. 2A), whereas 

ampicillin and amoxicillin showed an intensive absorption at approximately 310 nm, and a weak 
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peak at 645 nm (Fig. 2B, C). The latter was assigned to d-d transition in the coordinate-bound 

Cu
2+

 [17]. The λmax ~310 nm peak was also observed for cephalexin and cefaclor. The λmax at 

273 nm for amoxicillin, which arises from the forbidden π→π* transition in the phenolic ring 

[18], was not affected by copper ions. The key structural difference between penicillin G and 

these four antibiotics is the NH2 group on side-chain. Therefore, UV-Vis results imply that this 

group represents a site of coordinate bonding to Cu
2+

. Another probable binding site is N in the 

amide group. Coordinate bonds result in ligand-to-metal (Cu
2+

) charge transfer transition at ~310 

nm [13,19], which is in line with the observed absorption maxima. It has been proposed 

previously that Cu
2+

 forms a tridentate complex with cephalexin via amine, carboxylate, and 

carbonyl groups [13]. However, this complex has been synthesized in methanol, and it was 

water-insoluble. It is important to note that cefaclor and cephalexin underwent degradation in the 

presence of Cu
2+

, as concluded from the disappearance of λmax at ~265 nm and the rise of a broad 

peak at ~400 nm (Fig. 2D, E). The former peak has been attributed to O=C-N-C=C- group in the 

cephalosporin ring system [20]. The degradation of cefaclor was at least five times faster than 

cephalexin. Furthermore, UV-Vis spectra of ceftriaxone and ceftazidime did not change in the 

presence of Cu
2+

 (Fig. 2F, G). This implies that Cu
2+

 did not interact with the strongest 

chromophores in these antibiotics, and that transitions between Cu
2+

 and donor atoms show 

lower extinction coefficients (ε) than the chromophores. Previous studies have shown that ε for 

absorption maxima of ceftriaxone at 240 nm and 268 nm are ~30000 M
-1

 cm
-1

, whereas 

ceftazidime showed ε ~8500 M
-1

 cm
-1

 for the maximum at ~260 nm [21,22]. The absorbance of 

ceftriaxone is most likely related to the cephalosporin ring system and triazine dione moiety. In 

addition, aminothiazole group shows λmax at 253 nm, but ε (~8000 M
-1

 cm
-1

) is significantly 

lower than ceftriaxone absorption maxima [23]. On the other hand, λmax at 255 nm for 

ceftazidime may be attributed to both, aminothiazole group and pyridinium cation [23,24].
 
It 

appears that Cu
2+

 did not interact with the aminothiazole moiety (at least in ceftazidime; UV-Vis 

data were inconclusive for ceftriaxone). Ketoxime, a group that is also common for these two 

antibiotics and may form coordinate bonds with Cu
2+

 via N atom [25], shows λmax at ~190 nm 

[23], and could not be observed here. Finally, UV-Vis spectrum of meropenem with λmax at 298 

nm was not initially changed by Cu
2+

 (Fig. 2H). However, the signal showed a gradual decrease 

in the presence of copper ions, which implies that degradation of meropenem took place. 
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Interactions between organic molecules and transition metals may involve redox reactions, such 

as the reduction of Cu
2+

 to Cu
1+

. Given that Cu
1+

 rapidly reacts with molecular oxygen at 

physiological pH to produce the superoxide radical anion which is further dismutated to H2O2 

[26,27], the reduction of Cu
2+

 may be monitored by oximetry. Figure 3 shows that a significant 

O2 consumption was induced by the addition of Cu
2+

 to cefaclor and that H2O2 was accumulated 

in the system. No significant change was observed for any of the other examined antibiotics. The 

initial rate of O2 consumption by cefaclor/copper system was ~35 μM/min. This rate reflects the 

kinetics of cefaclor degradation, taking into account the stoichiometry of the overall reaction: 

cefaclor + Cu
2+

 + O2 → cefaclor
•+ 

+ Cu
2+

 + O2
•−

 (Cu
1+

 represents an intermediate). It is important 

to point out that meropenem-Cu
2+ 

system did not show detectable O2 consumption, which 

implies that meropenem does not undergo oxidation or that it may stabilize Cu
1+

. 

Low-T EPR spectroscopy was used to investigate the stoichiometry and structure of complexes 

of Cu
2+

 with antibiotics (Fig. 4). Only antibiotics that did not decompose in the presence of Cu
2+

 

(as determined from UV-Vis spectra; Fig. 2) were examined. It is important to point out that the 

EPR spectra of samples containing antibiotics and copper ions in 1:1 and 2:1 molar ratios were 

practically identical (not shown), implicating that the formed complexes show 1:1 stoichiometry. 

Cu
2+

 in the phosphate buffer exhibited an anisotropic EPR signal with one strong g⊥ = 2.05 line 

and four weak lines coming from hyperfine coupling with 
63

Cu/
65

Cu nuclei (I = 3/2) along g‖ = 

2.38 [28,29]. The g-values (g‖ > g⊥ > ge (g-value for free electron = 2.0023)), and the spectral 

shape imply that Cu
2+

 is octahedral coordination environment with tetragonal distortion [30,31]. 

The addition of penicillin G did not change the signal (Fig. 4A), further confirming that this β-

lactam does not form a complex with Cu
2+

 under physiological settings. Similar structures of 

complexes of ampicillin, amoxicillin, and cephalexin with Cu
2+

 were implicated by next-to 

identical EPR spectra (Fig. 4B). EPR spectra of complexes of these three antibiotics with Cu
2+

 

showed g-values that were similar to Cu
2+

 in antibiotic-free phosphate buffer - g‖ = 2.38 and g⊥ = 

2.07 (Fig. 4A), but the double integral of the signal was 1.5× higher. This implies that Cu
2+

 in the 

complex with antibiotics preserved octahedral geometry with tetragonal distortion. This is in line 

with a previous report on Cu
2+

 complexes with ampicillin and amoxicillin [16]. A larger g⊥ value 

implicates that anisotropy has decreased. Higher signal intensity may be explained by an 

increased solubility of Cu
2+

 in the presence of ampicillin, amoxicillin, and cephalexin. According 

to the speciation diagram for Cu
2+

 in phosphate buffer, Cu
2+

 is present in two forms at pH 7.4 - 
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the insoluble Cu3(PO4)2 and the soluble Cu(HPO4)2
2-

 (Supplemental Fig. S1). The tri-nuclear 

molecule shows a very broad EPR signal due to intra-molecular spin–spin interaction between 

Cu
2+

 centers [32,33]. Therefore, Cu(HPO4)2
2-

 represents the main ‘EPR-active’ Cu
2+

 species in 

the control system. Ampicillin, amoxicillin, and cephalexin appear to convert some of the 

insoluble tri-nuclear form into a soluble mono-nuclear complex with two coordinate bonds with 

the antibiotics, and the two other sites probably covered by phosphate ions. This is in accordance 

with the UV-Vis data and with the 1:1 stoichiometry. These antibiotics may increase labile 

copper pool in body fluids. 

On the other hand, the EPR spectrum of Cu
2+

 was significantly altered in the presence of 

ceftriaxone (Fig. 4C), implicating the formation of coordinate complex with a different geometry 

than Cu
2+

 that is coordinated by phosphate ions. The N atoms in amide and ketoxime groups are 

most likely the sites of coordinate bond formation [7]. The shape and a broader g⊥ line (ΔB⊥ = 

7.8 mT; for Cu
2+

 in the control system ΔB⊥ = 4.9 mT), imply that the complex might have a 

different geometry compared to other complexes here. This may be related to the rigidity of 

ketoxime group. It is worth mentioning that ceftriaxone has shown potent anticancer effects [34], 

which may be related to the formation of the complex with Cu
2+

 [7]. Finally, the sample 

containing Cu
2+

 and ceftazidime, exhibited an EPR signal with g‖ = 2.39 and g⊥ = 2.07, and an 

additional signal at g = 1.99 (Fig. 4D). The main signal was assigned to Cu
2+

 in octahedral 

coordination environment with tetragonal distortion. Ceftazidime may act as a tridentate ligand 

with N atoms in ketoxime and amide groups and O in the carboxylate group (on the side chain) 

being a sites of coordinate bonds formation. The g = 1.99 signal is more narrow compared to 

other lines (ΔB = 1.4 mT vs. ΔB ~4.9 mT), and comes from an organic radical that is produced in 

the reaction with Cu
2+

. Cu
2+

 may also bind to O atoms in cephalosporin ring which has 

deprotonated carboxyl group. Such binding may destabilize and open the ring resulting in radical 

formation. 

Cyclic voltammetry was applied to examine redox properties of copper ions in the presence of 

antibiotics at equimolar concentrations. Except meropenem, other β-lactam antibiotics did not 

show detectable oxidation/reduction currents in the applied scan range. Cyclic voltammograms 

(CV) of Cu
2+

 showed very weak currents (Fig. 5A), which is in line with the presence of 

insoluble Cu3(PO4)2 at pH 7.4, and with the previous observations that phosphate buffer 

attenuates copper-related currents [27]. The formation of complexes with ampicillin, amoxicillin, 
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and cephalexin resulted in a significant increase of peak currents (ip) (Fig. 5A, B), confirming 

that these antibiotics increased Cu
2+

 solubility in the phosphate buffer at physiological pH. Only 

a slight increase of oxidation/anodic (Epa) potentials was observed. Further, ceftriaxone and 

ceftazidime did not show a significant impact on ip (Fig. 5B). In the presence of cefaclor, a 

strong ip coming from the oxidation of Cu
1+

 to Cu
2+

 was observed. The Cu
1+

 current showed fast 

increase over 5 min incubation period (Fig. 5C). This further confirms that cefaclor reduced Cu
2+

 

to Cu
1+

. It is important to note that the chlorine on the cephalosporin ring represents the sole 

difference between cephalexine and cefaclor. Highly electronegative Cl atom withdraws 

electrons from the ring, which may lead to the destabilization of β-lactam ring in the presence of 

Cu
2+

 and to Cu
2+

 reduction. Finally, CV of copper/meropenem system was ligand centered (Fig. 

5D). Meropenem showed Epa at 1060 mV, which could be assigned to the irreversible oxidation 

of sulfide moiety [35]. A similar high Epa has been previously reported for methionine [36]. In 

the presence of Cu
2+

, Epa was shifted to 985 mV, implying that the sulfide group was more 

susceptible to oxidation. More importantly, ip showed a time-dependent decrease that resembled 

the kinetics of meropenem degradation as determined by UV-Vis spectroscopy. It is noteworthy 

that S in sulfide group shows higher affinity for Cu
1+

 that Cu
2+

 [37].  

The results of MIC analysis are presented in Table 1. Copper induced a drastic decrease in the 

activity of meropenem against E. coli and S. aureus, which is in line with the observed 

degradation of this antibiotic in the presence of copper ions. The formation of complexes with 

Cu
2+

 suppressed the activity of amoxicillin against E. coli and S. aureus, and the activity of 

ampicillin against E. coli. For ampicillin and S. aureus, MIC remained below the detection range 

in the presence of copper. In contrast, the activity of cephalexin against E. coli was slightly 

increased in the presence of copper, which is in accordance with previous reports [38]. MIC for 

ceftriaxone against both strains was increased, implying that the formation of the complex with 

Cu
2+

 may decrease its activity. Penicillin G also showed decreased activity against S. aureus in 

the presence of copper. This may be related to a very slow copper-induced degradation [10], 

since penicillin G and copper ion did not show coordinate or redox interactions here. Cressman 

et al. have reported that penicillin G can undergo rapid hydrolysis (half-life 50-100 s) in the 

presence of copper in slighly acidous conditions (pH 5.5) at t = 30
o
C [10]. Taking into the 

account that MIC assay involves 24 h incubation at higher temperature (37
o
C), it is plausible that 

some degradation of penicillin G could take place. In contrast, MIC for cefaclor against E. coli 
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was slightly decreased (i.e. antibacterial activity was promoted by copper), which may be 

explained by the production of hydrogen peroxide. Finally, MIC values for ceftazidime were not 

significantly affected by copper. 

 

4. Conclusions 

The coordinate interactions of ampicillin, amoxicillin, cephalexin, ceftriaxone and ceftazidime 

with copper show 1:1 stoichiometry. Structural difference between penicillin G, which does not 

interact with Cu
2+

, and ampicillin, amoxicillin, and cephalexin, clearly mark amine group on the 

side chain as the site of coordinate bond formation. The later three antibiotics increased the 

solubility of copper in the presence of phosphates and may contribute the labile copper pool in 

body fluids. Cefaclor showed the capacity to reduce Cu
2+

, leading to the production of hydrogen 

peroxide that may contribute to the antimicrobial effects of this drug. The degradation of 

meropenem in the presence of copper ions and significantly lower antimicrobial activity of 

amoxicillin, ampicillin, and ceftriaxone that may be related to the complex formation, call for 

caution in the application of these antibiotics to the patients with conditions that are related to 

increased labile copper pool. In addition, copper ions may be involved in the underlying 

mechanisms of antibiotic resistance. Pertinent to this, our results point out the necessity of 

investigating antibiotic resistance in cohorts of patients with conditions that are linked to the 

increased labile copper pool. 
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Fig. 1. Structural formulas of β-lactam antibiotics. Penicillins: penicillin G, ampicillin, and 

amoxicillin; Cephalosporins: cephalexin, cefaclor, ceftriaxone, and ceftazidime; Carbapenems: 

meropenem. 

 

Fig. 2. UV-Vis spectra of β-lactam antibiotics in the absence or the presence of copper at 

equimolar concentration, in 50 mM phosphate buffer, pH 7.4. (A) Penicillin G (0.2 mM); (B) 

Ampicillin (0.5 mM); (C) Amoxicillin (0.5 mM); (D) Cephalexin (0.2 mM); (E) Cefaclor (0.2 

mM); (F) Ceftriaxone (0.05 mM); (G) Ceftazidime (0.2 mM); (H) Meropenem (0.1 mM). The 

spectra of ceftriaxone-Cu
2+

 and ceftazidime-Cu
2+

 systems represent a sum of spectra of these 

antibiotics and Cu
2+

, taken separately. All antibiotics were stable in copper-free solutions. 

 

Fig. 3. The consumption of molecular oxygen in systems with cefaclor (0.2 mM) and Cu
2+

 

(0.2 mM) in 50 mM phosphate buffer, pH 7.4. Changes in O2 concentration (left panel), and 

O2 consumption rate (right panel) induced by the addition of Cu
2+

 to the equimolar solution of 

cefaclor. H2O2 accumulation was quantified 30 min after the addition of antibiotic to the system, 

by catalase-induced O2 release (2H2O2 → 2H2O + O2). 

 

Fig. 4. 110 K EPR spectra of 0.2 mM Cu
2+

 in the absence or the presence of 0.2 mM β-

lactam antibiotics in 50 mM phosphate buffer, pH 7.4. (A) Cu
2+

 without (gray) and with 

penicillin G (black). (B) Cu
2+

 in the presence of ampicillin, amoxicillin or cephalexin; (C) Cu
2+

 

in the presence of ceftriaxone; (D) Cu
2+

 in the presence of ceftazidime. Samples were incubated 

for 5 min at 298 K and quickly frozen. EPR parameters were: microwave power, 3.17 mW; scan 

time, 100 s; modulation amplitude, 0.5 mT; modulation frequency, 100 kHz; number of 

accumulations, 4 
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Fig. 5. Cyclic voltammograms (CV) of copper and antibiotics in 50 mM phosphate buffer, 

pH = 7.4, at boron-doped diamond electrode. (A) CVs of Cu
2+

 (2 mM) in the absence and the 

presence of 2 mM penicillin G, ampicillin, or amoxicillin. (B) CVs of Cu
2+

 (2 mM) in the 

absence and the presence of 2 mM cephalexin, ceftriaxone, or ceftazidime; (C) Changes in CV 

of copper (0.2 or 2 mM) during incubation with equimolar concentration of cefaclor; (D) CV of 

Cu
2+

 (0.5 mM), meropenem (0.5 mM), and copper + meropenem system. Voltammograms were 

collected immediately following the adition of CuCl2. Scan rate was 0.1 V/s. Scan range was -1 

to 1 V (-1 to 1.5 V for meropenem). Peak current oxidation/anodic potentials (Epa) are presented. 

Arrows point out the change in currents. 

 

Table 1. Minimal inhibitory concentration (MIC; μg/mL) of β-lactam antibiotic in the 

absence or the presence of equimolar Cu
2+

 for E. coli and S. aureus. Copper did not show 

detectable inihibitory effects in the concentration range applied here. Penicillin G is ineffective 

against Gram-negative bacteria, such as E. coli. 

 without copper with copper 

Antibiotic E. coli S. aureus E. coli S. aureus 

Penicillin G - <6.25 - 62.5 

Ampicillin 25 <6.25 125 <6.25 

Amoxicillin 62.5 <6,25 1000 62.5 

Cephalexin 125 <6.25 25 <6.25 

Cefaclor 50 <6.25 25 <6.25 

Ceftriaxone <6.25 <6.25 12.5 12.5 

Ceftazidim 12.5 12,5 12.5 25 

Meropenem 12.5 <6.25 >1000 >1000 
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Highlights: 

 β-Lactam antibiotics showed coordination/redox interactions with Cu 

 Ampicillin, amoxicillin, cephalexin and ceftriaxone formed stable Cu
2+ 

complexes 

 Cefaclor reduced Cu
2+

 to Cu
1+

, whereas meropenem underwent degradation 

 Cu
2+

 decreased antimicrobial effects of meropenem, amoxicillin, and ceftriaxone  

 




