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1 Abstract

2 Pt(II) and Pd(II) complexes (1 and 2, respectively) with thiomorpholine-4-carbonitrile (TM–

3 CN), N-substituted thiomorpholine derivative, were synthesized from tetrachlorido precursors 

4 in water. Structural analysis has shown that 1 represents the first monomeric metal complex 

5 with this ligand type with axial M–S bond with respect to the TM‒CN ring chair 

6 conformation, while in 2 a typical equatorial M–S bond position with respect to the ring chair 

7 conformation was observed. A detailed DFT investigation revealed that axial conformers are 

8 more stable for molecular forms of both metals, while intermolecular interactions in the 

9 crystals stabilize the axial conformer for Pt(II) and the equatorial one for Pd(II). The 

10 magnitude of this stabilization in the case of 2 is large enough to change the most stable axial 

11 conformer in the molecular form to the equatorial one in the crystal. Further investigation of 

12 strength of individual intermolecular interactions revealed significant differences of some 

13 interactions between the two structures. The likely cause of the difference in the crystal 

14 structures of experimentally obtained complexes is the fact that 1 and 2 exhibit different 

15 dominant interactions: C‒H/M and C‒H/S are more dominant in 1 and C‒H/Cl interactions 

16 are more dominant in 2. In addition, DFT calculations have shown that while axial position of 

17 Pt‒S bond with respect to the ring chair conformation results in significantly shorter C‒H/Pt 

18 interaction distance than in the hypothetical equatorial conformer, there is very little 

19 difference in C‒H/Pd interaction distances in conformers with axial and equatorial position of 

20 Pd‒S bond with respect to the ring chair conformation.

21

22 Keywords: Pd(II) and Pt(II) complexes; periodic DFT; Hirshfeld analysis; intermolecular 

23 interaction energies.
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1 INTRODUCTION 

2 Thian (TH) is a simple monodentate sulfur-containing six-membered heterocyclic 

3 ligand, which can coordinate to metals forming axial or equatorial M‒S bonds with respect to 

4 the ring chair conformation. Due to 1,3-diaxial interactions, which contribute to the higher 

5 energy of the axial conformer relative to the equatorial one, a formation of equatorial M‒S 

6 bond with respect to the ring chair conformation is preferable. This is in line with the results 

7 of Cambridge Crystallographic Database (CSD) search where, out of 13 reported crystal 

8 structures, there is no crystal structure with exclusively axial position of M‒S bond with 

9 respect to the TH ring chair conformation (Table 1).1 In 11 structures M‒S bond is in 

10 equatorial position, while in the case of four complexes sulfur atom coordinates as a double 

11 donor with formation of both axial and equatorial M‒S bonds with respect to the TH ring 

12 chair conformation. 

13 Introduction of a nitrogen donor in TH ring results in another heterocyclic sulfur-

14 based ligand ‒ thiomorpholine (TM). There have been 12 crystal structures of TM complexes 

15 deposited in the CSD (Table 1).1 Three binding modes are observed for TM: monodentate N 

16 (n-N), bidentate bridging-N (µ-N) and tridentate bridging-S (n-N:µ-S). The latter 

17 coordination mode includes both axial and equatorial position of the M‒S bond (where S is 

18 the bridging sulfur atom) with respect to a ring chair conformation, and it was only observed 

19 in the case of one Cu-based TM complex. TM could act as N,S bidentate chelator but this is 

20 unfavorable since boat conformation would be required for the chelating coordination mode.2 

21 There have been no reported crystal structures where TM is coordinated to metal exclusively 

22 via sulfur atom.

23 N-substituted TM analogues (N-TMs) have also been used for preparation of metal 

24 complexes and there are currently 18 reported crystal structures deposited in the CSD (Table 

25 1).1 Coordination modes of N-TMLs observed in the crystal structures of the complexes are: 

26 monodentate coordination via S atom, mixed N,S chelation and coordination of N atom 

27 together with other donor atoms from R substituent. Exclusive coordination via the sulfur 

28 atom was observed in the case of polymeric Cu complexes where ligands contain electron-

29 withdrawing amide groups bonded to N-TMLs.3–6 A typical, exclusive axial conformer was 

30 observed only in the case of two Cu(I) coordination polymers.4,7 It is worth mentioning that 

31 in the mixed N,S bidentate chelates, N-TMs coordinates in the higher energy boat 

32 conformation. There have been several reports on possible application of metal complexes 

33 with N-TMs. A comparative study of catalytic activity of Cu(II) binuclear complexes with 

34 phenol-based ligand with N-(2-aminoethyl)thiomorpholine side arms, as well as its 
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1 morpholine and piperidine analogues, showed that TM-based complex is the most active and 

2 potent catechol oxidant.8 Also, two Ru-based complexes with thioamide-based ligands 

3 showed potential to be used as detectors for NO due to directly observed fluorescence after 

4 NO binding to the metal center.9 Finally, 2-(cyclohexylthio)-1-thiomorpholinoethanone 

5 ligand forms three Cu(I) coordination polymers which undergo crystal-to-crystal 

6 transformation with and without  solvent, while variations of the distance between copper 

7 atoms with temperature are responsible for the observed luminescence thermochromism.3 

8 Taking into account that many properties of chemical systems are defined not only by 

9 the molecular structure, but also by weak intermolecular interactions10–15 we found it 

10 interesting to study coordination ability of one unexplored N-TM ligand, thiomorpholine-4-

11 carbonitrile (TM-CN) towards Pd(II) and Pt(II).  Both chosen ions have d8 electronic 

12 configuration and almost the same ionic radii, thus their complexes with the same ligand 

13 systems are often isostructural. However, extended electronic density and higher basicity of 

14 5d Pt(II) ion in comparison to 4d Pd(II) ion, results in stronger M···H‒X (X = C, N or O) 

15 interactions for Pt(II) which lead to difference in the structure of the complexes.16 Thus, these 

16 two systems provide an excellent opportunity to study the effect of intermolecular 

17 interactions on the stability of molecular and crystal structures, given that four different types 

18 of intermolecular interactions can be formed. We present two non-isostructural square-planar 

19 Pd(II) and Pt(II) complexes with TM-CN ligand, showing the difference in the M‒S bond 

20 position with respect to the ring chair conformation. To understand the difference in the 

21 crystal structure of synthesized complexes, DFT calculations of TM-CN coordination in a 

22 molecular structure, Hirshfeld surface and fingerprint plot analysis, DFT calculations of 

23 periodic structures with comparison of intermolecular interaction energies, crystallographic 

24 and quantum chemical analysis of observed interactions, as well as detailed thermal stability 

25 investigations were performed. 

26
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1 Table 1. Coordination modes of TH, TM and N-TM ligands in crystal structures of complexes 

2 deposited in the CSD

3 aComplexes with two TH ligands with different coordination modes; bpolydentate coordination via N of TM 

4 ring and other donor atoms from R groups.

5

6

7

8

9

10

11

12

Ligand TH TM N-TM

Number of crystal 

structures

13 12 18

S-eq Fe, Os, Pd, W, Nba, 

Taa, Ru

/ Cu

S-ax / / Cu

S-bridging W, Os, Nba, Taa / /

N-monodentate / Pd, Co, Ni, Cu, Al /

Nb / / Zn, Cu, Pd, Ni

N-bridging / Al /

tridentate bridging S / Cu /

N,S-bis bidentate / / Pd, Rh

N,S-bidentate / / Pd
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1 EXPERIMENTAL SECTION 

2

3 Materials and Methods 

4 All the employed reagents and solvents were of analytical grade and used without 

5 further purification. K2[PdCl4] (≥ 99.9 %) and K2[PtCl4] (98 %) were obtained from Sigma-

6 Aldrich. Elemental analyses (C, H, N, S) were performed by standard micro methods using 

7 the ELEMENTARVario ELIII C.H.N.S=O analyzer. The vibrational spectra were recorded 

8 by Spectrum Two instrument (Perkin Elmer) in the wavenumber range 4000–450 cm–1, as 

9 well as in the range 600–300 cm–1 using the Universal Attenuated Total Reflection (UATR) 

10 technique. The method used was insensitive to samples thickness or shape due to the 

11 presence of the UATR hard crystal material. The apparatus was equipped by a diamond 

12 material with the measurable surface of about 4 mm2 allowing good contact with both 

13 samples. Molar conductivity measurements were performed at ambient temperature (298 K) 

14 on the Crison Multimeter MM41. The NMR spectral measurements were performed on a 

15 Bruker Avance III 500 spectrometer or Agilent 400-MR spectrometer equipped with a broad-

16 band direct probe. The spectra were recorded at room temperature in DMSO-d6, CDCl3 or 

17 CD3NO2. Chemical shifts are given on  scale relative to tetramethylsilane as internal 

18 standard for 1H and 13C. Assignments of signals in NMR spectra are given in ESI.  High 

19 resolution electron spray ionization mass spectrum (HRMS-ESI) of the ligand was recorded 

20 on a Agilent Technologies 6210-1210 TOF-LC-ESI-MS instrument operating in the positive 

21 ion mode. The thermogravimetric analysis was performed by means of thermal equalizer 

22 TG209 Nietzsche coupled with FT-IR. The analyzer was equipped with a programmable 

23 temperature controller, which automatically maintains constant temperature during thermal 

24 events. The TG weight-loss measurements were performed in 20‒950 °C temperature range 

25 at a heating rate of 15°C/min, in alumina crucible. The IR spectra were of gaseous 

26 decomposition products were registered using a Bruker IFS 66 spectrophotometer. All 

27 experiments were carried out in an argon atmosphere and verified at least twice. 

28 Synthesis of the ligand thiomorpholine-4-carbonitrile (TM-CN)

29 The ligand was synthesized according to the literature procedure.17 White solid; m.p.: 

30 41-43 °C. Anal Calcd. for C5H8N2S (MW = 128.20): C, 46.85; H, 6.29; N, 21.85; S, 25.01. 

31 Found: C, 46.97; H, 6.43;, N, 21.77; S, 24.96 %. 1H NMR (CDCl3, 500.26 MHz) δH: 2.70 (t, 

32 4H), 3.46 (t, 4H); 13C NMR (CDCl3, 126 MHz) δC: 26.1, 50.8, 117.4. HRMS (ESI) m/z calcd. 

33 for C5H9N2S (M+H)+ 129.0481, found 129.0478. 
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1 Synthesis of [PtCl2(TM-CN)2] (1) 

2 Solid K2[PtCl4] (0.081 g, 0.2 mmol) was added into the solution of TM-CN (0.050 g, 

3 0.390 mmol) in H2O (10 mL). A pale-yellow precipitate formed immediately. Reaction 

4 mixture was stirred at 50 °C for 1 h, after which the precipitate was separated by filtration, 

5 washed with small portions of cold H2O and EtOH and dried in desiccator.  Yield: 0.091 g 

6 (90 %). Quality single crystals were obtained by slow diffusion of EtOH vapor into the 

7 DMSO solution of the product. Anal. Calcd. for C10H16Cl2N4PtS2 (MW = 522.38): C, 22.99; 

8 H, 3.09; N, 10.73; S, 12.27 %. Found: C, 22.78; H, 3.15; N, 10.74; S, 12.48. ΛM (1 × 

9 10‒3 M, MeCN) = 18.2 Ω‒1 cm2 mol‒1.

10  

11 Synthesis of [PdCl2(TM-CN)2] (2) 

12 Solid K2[PdCl4] (0.050 g, 0.15 mmol) was added into the solution of  TM-CN (0.010 

13 g, 0.075 mmol) in H2O (10 mL). Reaction mixture was stirred at 50 °C for 1 h. The yellow 

14 colored precipitate was separated under the vacuum and dried in the desiccator. Yield: 0.024 

15 g (72%). Quality single crystals were obtained by slow diffusion of pentan-2-one vapor into 

16 the nitromethane solution of the product. After two days yellow single crystals were filtered 

17 off and washed with cold water. Anal. Calcd. for C10H16Cl2N4PdS2 (MW= 433.69): C, 27.69; 

18 H, 3.72; N, 12.92; S, 14.78 %. Found: C, 27.48; H, 3.59; N, 12.74; S, 14.84. ΛM (1 × 

19 10‒3 M, MeCN) = 10.10 Ω‒1 cm2 mol‒1.

20

21 X-ray crystallography  

22 Single crystal X-ray diffraction was performed on an Oxford Diffraction Gemini S 

23 kappa geometry diffractometer, equipped with Mo Kα radiation ( = 0.71073 Å) from a 

24 sealed tube source, and a Sapphire CCD detector. Data collection strategy calculation, data 

25 reduction, cell refinement and absorption correction were performed with the 

26 CRYSALISPRO.18 Structures were solved using SHELXT19 and refined with anisotropic 

27 displacement parameters for all non-hydrogen atoms using SHELXL-2014/6.20 Program 

28 SHELXLE21 was used as graphical user interface for structure solution and refinement 

29 procedures. Hydrogen atoms bonded to carbon atoms in 1 and 2 were introduced in idealized 

30 positions and refined using riding model structures were validated using PLATON22 and CSD 

31 (v. 5.40, updates Aug. 2019)23 using MERCURY CSD.24  

32 The X-ray powder diffraction (XRPD) investigation was conducted on Rigaku 

33 Smartlab X-ray Diffractometer in θ-θ geometry (the sample in horizontal position) in 
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1 parafocusing Bragg-Brentano geometry using D/teX Ultra 250 strip detector in 1D standard 

2 mode with CuKα1,2 radiation source (U = 40 kV and I = 30 mA). The XRPD patterns were 

3 collected in 5‒65 ° 2θ range, with step of 0.01 °, and data collection speed of 5 °/min with 

4 horizontal sample rotation of 20 rpm. For every sample small amount of single crystals was 

5 pulverized, and low background single crystal silicon sample holder was used to minimize 

6 the background. The crystal phases present in the samples were identified in dedicated 

7 Rigaku PDXL 2.0 software, comparing them with user database compromised of 

8 crystallographic information files (CIF) previously obtained by single crystal X-ray 

9 diffraction (SC XRD) structure determination.

10

11 DFT calculations

12 Geometry optimization of individual molecules was performed using Gaussian09 

13 software,25 with WB97XD method, 6-31+G** basis set for non-metals (C, H, N, S, and Cl) 

14 and LANL2DZ for metal ions (Pd and Pt) and SMD solvation model.26 Lack of imaginary 

15 frequency in the frequency calculation was taken as a confirmation of a true minimum. DFT 

16 calculations on a periodic system were conducted on a unit lattice using ABINIT 8.10 

17 software package27 with PBE0 functional28 and norm-conserving ONCVPSP-3.2.3.1 

18 pseudopotential. Energy cutoff was 990 eV and SCF tolerance was 5×10−7 eV per atom.

19 To get insight into the strength of particular interactions involving in crystal packing 

20 of the considered complexes (C‒H/Cl‒M, C‒H/S‒M, C‒H/NC and C‒H/M interactions), 

21 DFT calculations on a model system CH4/metal complex were performed. Unlike the 

22 previous set of calculations, these were conducted only on the equatorial conformers, because 

23 it provided the best model where these specific interactions could be isolated by eliminating 

24 any chance of potential additional interactions of the TM–CN ligand and CH4. Therefore, 

25 only structures with equatorial M‒S bonds with respect to the ring chair conformation were 

26 used in the calculation. During these calculations the distance of H atom to the corresponding 

27 acceptor atom (Cl, S, N, Pt, and Pd) is changed in range from 2.5 to 3.5 A. 

28

29 Hirshfeld surface analysis and calculation of intermolecular interaction energies

30 For visualization of Hirshfeld surfaces, CIF files were used. Hirshfeld surfaces 

31 visualization and presentation of results as dnorm, shape index and curvedness as well as 

32 calculation of 2D fingerprint plots with de and di distances were generated using Crystal 

33 Explorer v.17.5.29,30 The distance from the surface to the nearest nucleus of the atom on the 
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1 outside of the surface is denoted as de while the distance from the surface to the closest 

2 nucleus of the atom on the inside of the surface is denoted as di. Surfaces are mapped over a 

3 standard color scale and 2D fingerprint plots are calculated using de and di values in the range 

4 0.4‒2.8 Å.

5 Intermolecular interaction energies were calculated using CrystalExplorer v17.5, with 

6 wavefunction calculated using Gaussian09 software25 with B3LYP method, 6-31G(d,p) basis 

7 set for non-metals (C, H, N, S, and Cl) and DGDZVP for metal center. 

8

9 Crystallographic analysis of X–H/Cl–M, X–H/S–M, X–H/M, and X–H/NC interactions

10 The crystallographic analysis of X–H/Cl–M, X–H/S–M, X–H/M, and X–H/NC  

11 interactions is based on the crystal structures extracted from the CSD.31 The study 

12 of X‒H/M interactions is based on structures with M ion from square-planar complexes. The 

13 geometric parameters used for search the CSD were the same for all analyzed interactions: 

14 distance between H atom from X–H group and acceptor atom (A= Cl, S or M) is less than 2.9 

15 Å (H...A or d distance) and X–H...A angle (α angle) is larger than 110°. Analyzed structures 

16 had to satisfy the following criteria: (a) the crystallographic R factor less than 10%; (b) error-

17 free coordinates according to the criteria used in the CSD system; (c) no crystallographic 

18 disorder; (d) no polymeric structures; (e) positions of all hydrogen atoms normalized.

19 RESULTS AND DISCUSSION

20 Synthesis and characterization of the complexes

21 The complexes were obtained by reaction of TM–CN with K2[MCl4] (M = Pt or Pd) 

22 in water as a solvent in a molar ratio ligand : metal salt = 2 : 1. Pale yellow (Pt-complex 1) 

23 and orange (Pd-complex 2) precipitates were obtained after 1 h at 50 °C. Single crystals 

24 suitable for X-ray diffraction (XRD) analysis (vide infra) were obtained by a vapor diffusion 

25 method. Results of elemental analysis indicate that molar ratio of the ligand and metal ions is 

26 preserved in the obtained complexes, therefore the complexes can be represented by the 

27 following general formula [MCl2(TM–CN)2] (M = Pt, Pd).  They are soluble in DMSO, 

28 DMF, MeCN and MeNO2, and sparingly soluble in MeOH and EtOH. Molar conductivity 

29 measurements for both compounds were performed in MeCN solution. Obtained values are 

30 lower than those characteristic for 1:1 electrolytes, indicating that molecular complexes were 

31 obtained, which is in agreement with the proposed general formula.
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1 The detailed assignment of vibrations of 1 and 2, with corresponding mode 

2 descriptions, are reported in Table S1, Electronic Supplementary Material (ESI). Methylene 

3 (CH2) group vibrations of TM–CN ligand in both complexes are observed as intense peaks in 

4 the range 2900–3000 cm‒1 (Figure 1), originating from the overlapping of the absorption 

5 peaks of symmetric and asymmetric stretching of the CH2 group in the coordinated 

6 ligand.32,33 Additionally, these stretching frequencies are associated with vibrational modes 

7 like rocking and twisting, as well as wagging modes related with polarization of vibrations.34 

8 The CH2-stretching region of coordinated TM–CN ligand in the complexes is surprisingly 

9 similar to coordinated morpholine or piperazine, with the exception of changes in relative 

10 intensities. This suggests that the lone pair orbitals on sulfur may play a similar role to that of 

11 oxygen or nitrogen in shifting the position of certain CH2 bands.35 Among the other 

12 vibrations of CH2 group of TM–CN ligand in both complexes, the bands at 1280‒1113 cm‒1 

13 region are related to wagging, and twisting. In addition, rocking modes of CH2 group at 980 

14 cm‒1 are also observed.36 The other bands of CH2 group are observed in the expected region 

15 and are presented in Table S1 (ESI). Moreover, the UATR bands of ring vibrations are 

16 identified in 1283‒1113, 980‒740 and 580‒540 cm‒1 regions as very weak and weak peaks 

17 for 2 and medium strong and strong peaks for 1. The lower frequencies of these peaks in 

18 comparison to the free ligand are probably due to the coordination of TM-CN ligand to the 

19 metal centers.37

20 The absorption region between 2260 and 2200 cm‒1 is assigned to the stretching 

21 vibrations of   C≡N group. In IR spectra of the complexes, the   C≡N stretching bands are 

22 very intense, although the peak observed for 1 is more intense than that of 2. The in-plane 

23 bending of N-CN bond is obtained in the low frequency regions at 540 cm‒1 and 543 cm‒1 for 

24 1 and 2, respectively, overlapping with C–C in-plane bending vibration. Thiols or thioamides 

25 generally exhibit IR absorption at 1750–1400 cm‒1,38 with ring size, metal ionic center bound, 

26 steric and electric effects resulting in significant shifts in CS absorption frequencies.39 In 1 

27 (Figure 1A)  and 2 (Figure 1C) the C–S stretching vibrations are observed in 1652‒1401 cm‒1 

28 for both compounds. Additionally, the intense peaks observed in 505 cm‒1 for 1 and 504 cm‒1 

29 for 2 are assigned to the stretching vibrations of M–S bonds.

30 Square-planar complexes 1 and 2, ν(M–Cl) are sensitive to the ligand’s trans-

31 influence,40 which has been studied extensively using UATR spectroscopy. Vibrational 

32 spectra of trans isomers of 1 and 2 exhibit several ν(M–Cl) band in the infrared below 400 

33 cm‒1. Additionally, the UATR spectra of 1 (Figure 1B)  and 2 (Figure 1D)  appear to confirm 
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1 the stereochemistry of these compounds, as well as indicate the presence of M–Cl bonds 

2 inside the coordination spheres of both compounds (Table S1, ESI).

3

4

5 Figure 1. UATR spectra in the 4000‒450 cm‒1 region of trans-[PtCl2(TM-CN)2] (1) (A) and 

6 trans-[PdCl2(TM-CN)2] (2) (C). UATR spectra in the 450‒300 cm‒1 region of 1 (B)  and 2 

7 (D).
8

9 Thermal behavior

10 Thermal analyses of 1 and 2 were carried out by the TG and DTG techniques. The 

11 volatile products of the early stages of decomposition were collected and identified by IR 

12 spectroscopy. The experimental results for both compounds studied revealed that the 
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1 degradation occurred in three main steps (Figure 2). The study of thermal decomposition of 1 

2 indicated its increased heat endurance. It decomposed in temperatures range 170‒730 °C. 

3 Both complexes are stable up to about 170 °C. Above this temperature, the elimination of the 

4 greatest part of TM–CN begins. The temperature ranges and the relative observed and 

5 calculated weight losses are given in Table 2. From the weight loss the stoichiometries of the 

6 resultant intermediate species are assigned. The data corresponds to temperatures between 

7 170 and 725 °C suggest a multi-step decomposition of both compounds. Then a series of 

8 exothermic heat changes, in both cases, corresponds to a complete decomposition of the 

9 residual sulfur-based TM–CN ligand and the formation of PtO and PdO, respectively. A 

10 period of slow losses of weight followed by further losses of chlorides and formation of 

11 oxides was complete by about 725 °C. No metal thiocyanates, sulfides or sulfates were 

12 detected in the course of the decomposition as it was reported in the case of thermal 

13 decomposition of metal chloride thiomorpholine complexes.41 Based on all this, it can be 

14 concluded that the thermal decompositions of 1 and 2 occur through breaking of metal-sulfur 

15 bonds. The residual masses of 34.10% (PtO) and 36.10% (PdO) for 1 and 2, respectively, 

16 were caused by simultaneous formation of nitrogen, carbon and sulfur species (NO, CO, CO2, 

17 H2S) and Cl2 (Figures S1 and S2, ESI). Moreover, the theoretical (calculated) and 

18 experimental percentages of mass losses of both complexes are in very good agreement 

19 (Table 2).

20

21

22 Figure 2. TG and DTG curves of complexes 1 (A) and 2 (B).

23

24

25
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1 Table 2. Thermal analysis data for 1 and 2.

Mass loss [%]Complex Step Onset 

[°C]

Endset 

[°C]

Leaving group

Exp. Calc.

Residue 

Exp. (Calc.)

1 20 250 NH3 2.53 3.24 97.47 (96.76)

2 250 410 CO2/ NO2/ H2S/ CO 38.44 38.17 59.03 (58.59)1

3 420 725 Cl2/ CO/ NO 24.93 24.61 PtO 34.10 (33.98)

1 20 330 CO2 10.72 10.11 89.28 (89.89)

2 330 475 NO2/ H2S/ NO 20.07 20.99 69.21 (68.90)
2

3 475 730 NH3/ Cl2/ CO/ NO 33.11 33.56 PdO 36.10 

(35.34)

2
3

4 XRD analysis

5 The summary of data collection and refinement parameters for 1 and 2 are given in 

6 Table S2 (ESI), whereas selected bond lengths and bond angles are presented in Table S3 

7 (ESI). The complexes 1 and 2 crystallize in monoclinic crystal system, but in different space 

8 groups (I2/a and P21/c, respectively). Both complexes are centrosymmetric, with metal ions 

9 residing on a special position with site symmetry ‒1 (Wyckoff letter a for 1 and d for 2). 

10 Thus, asymmetric units of the obtained trans isomers consist of a metal center, one TM–CN 

11 coordinated via S atom and one chloride ion. Molecular structures of obtained square planar 

12 complexes 1 and 2 are depicted in Figure 3. Although Pt and Pd atoms lie in Cl1,S1,Cl1i,S1i 

13 plane (1: i =1 – x, 1 – y, 1 – z; 2: i = 1 – x, – y, 1 – z) and trans-bond angles are exactly 180°, 

14 the coordination geometry around metal centers in both complexes is distorted since cis-bond 

15 angles deviate slightly from an ideal value of 90° (Table S3, ESI). Noteworthy, although in 

16 both complexes thiomorpholine rings are in a chair conformation, the position of  M–S bonds 

17 with respect to the ring chair conformation is different. In 1, Pt–S bond is in axial, while Pd–

18 S bond in 2 is in equatorial position with respect to the ring chair conformation. Overlay of 

19 both structures is depicted in Figure 3C,D. These conformational differences are also 

20 reflected in the values of M‒S‒Cg angles, where Cg represents a centroid of the 

21 thiomorpholine ring (Table S3, ESI), as well as in the values of the corresponding torsional 

22 angles M‒S1‒C1‒C2 and M‒S1‒C3‒C4 (Table S3, ESI). Due to contribution of a resonance 

23 structure with positive charge on thiomorpholine nitrogen atom (+N1=C5=N2‒), CN 

24 substituent in both complexes is bonded to the thiomorpholine ring in a position which is 

25 between axial and equatorial one with respect to the ring chair conformation. This is also 
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14

1 reflected in a sum of corresponding bond angles around N1 (343.9° in 1 and 359.1° in 2). The 

2 N–CN fragment is almost linear with N–CN angle of 178.3° in 1 and 177.5° in 2. 

3 Due to similar ionic radii of metal ions,42 the lengths of the corresponding 

4 coordination bonds (M–Cl and M–S) are similar in both systems (Table S3, ESI) and are 

5 typical of values found in related Pt(II) and Pd(II) complexes.23,43 Lengths of bonds in TM 

6 ring are also in the usual range.24,44 

7

8
9

10 Figure 3. Perspective view and labeling of molecular structure of 1 (A) and 2 (B). Thermal 

11 ellipsoids are at the 50% probability level. Equivalent atoms are generated by the 

12 transformation i =1 – x, 1 – y, 1 – z for 1 and i =1 – x, – y, 1 – z for 2. (C) Overlay (through 

Page 14 of 40

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

1 M and four donor atoms) of molecular structures of 1 (yellow) and 2 (red). (D) Overlay 

2 (through C1, C2, N1, C3 and C4) of molecular structures of 1 (capped sticks) and 2 (ball and 

3 sticks). Hydrogen atoms are omitted for clarity (C, D).

4

5 Thiomorpholine methylene groups form intramolecular C–H/Cl and C–H/M 

6 interactions. It is well known that metal complexes can form hydrogen bonds in which metal 

7 ion serves as an acceptor.44 As a consequence of conformational differences, H···Cl and 

8 H···M distances in the two structures are different and shorter in the system with axial M–S 

9 bonds. In 1, each Cl ligand forms two C–H/Cl interactions with two methylene groups from 

10 one ligand and one interaction with methylene group from another ligand (1: Cl1···H3A = 

11 2.809 Å, Cl1···H4A = 2.764 Å, Cl1···H1Bi = 2.689 Å, i = 1 – x, 1 – y, 1 – z). In 2, one 

12 methylene group from one ligand is involved in bifurcated C–H∙∙∙Cl interaction, while one 

13 methylene group from other ligand forms one interaction with Cl ligand (2: Cl1···H1B = 

14 2.938 Å, Cl1···H3Bi = 2.913 Å, Cl1···H3Ai = 3.088 Å, i = 1 – x, –y, 1 – z). Pd(II) forms two 

15 C–H/Pd interactions with one CH2 group from each ligand, while Pt(II) forms four C–H/Pt 

16 interactions with two CH2 groups from each ligand (1: Pt1···H2B = 3.141 Å, Pt1···H4A = 

17 3.273 Å; 2: Pd1···H1A = 3.293 Å). Intramolecular interactions are depicted in Figure 4. Such 

18 distribution of intramolecular interactions is a consequence of a difference in the position of 

19 M‒S bond (axial or equatorial) with respect to the ring chair conformation of TM–CN. 

20 However, it should be stressed that Pt(II) ion forms somewhat stronger hydrogen bonds than 

21 Pd(II) ion.44–46 It is also useful to point out that weak C–H hydrogen bonding has the ability 

22 to prevent rotational flexibility of coordinative bonds and conformational flexibility of 

23 ligands.47

24
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1
2 Figure 4. Intramolecular C–H/Cl (blue) and C–H/M (magenta) interactions in molecular 

3 structures of 1 (A) and 2 (B). Symmetry operations: i = 1 – x, 1 – y, 1 – z in 1 and i = 1 – x, – 

4 y, 1 – z in 2.

5 The cell packing diagrams for the two complexes is depicted in Figure 5. Due to the 

6 absence of a classical proton donor crystal packing in both complexes are based on weak 

7 hydrogen bonds. 

8

9 Figure 5. The cell packing diagrams for 1 (A) and 2 (B).

10
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1 Each molecule of 1 is involved in four C–H/S interactions with two adjacent 

2 molecules with a formation of 1-D chains parallel to [1 1 1] [C3–H3B/S1 (½ – x, ½ – y, ½ – 

3 z) = 4.137 Å, C–H∙∙∙S = 165°] (Figure 6A). Due to space group symmetry the same 

4 interactions are responsible for formation of 1-D chains parallel to [1 –1 1]. These two types 

5 of chains are interlinked through C–H/Pt, C–H/Cl and C–H/π interactions, thus forming 3-D 

6 crystal packing. Each molecule of Pt(II) complex is involved in four C–H/Pt interactions 

7 [C2–H2B/Pt1 (1.5 – x, y, 1 – z) = 4.095 Å, C–H∙∙∙Pt = 137.6°] (Figure 6B), C–H/π 

8 interactions [C4–H4A/Cg (1.5 – x, y, 1 – z) = 3.520 Å, C–H∙∙∙Cg = 127.19°; Cg is centroid of 

9 carbonitrile bond] with adjacent complex molecules (Figure 6C) and three C–H/Cl 

10 interactions [C1–H1A/Cl1 (x, ½ – y,  ½ + z) = 3.894 Å, C–H∙∙∙Cl = 137.6°, C2–H2A/Cl1 (1.5 

11 – x, y, 1 – z) = 3.285 Å, C–H∙∙∙Cl = 119.39°, C3–H3A/Cl1 (½ – x, y, 1 – z) = 3.088 Å, C–

12 H∙∙∙Cl = 122.47° ] (Figure 6D).

13

14
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1 Figure 6. C–H/S (A), C–H/Pt (B), C–H/π (C) and C–H/Cl (D) interactions in the crystal 

2 packing of 1.

3

4 On the other hand, each molecule of 2 forms four C–H/S interactions with two 

5 adjacent molecules with formation of 2-D layers parallel to (100) [C3–H3B/S1 (1 – x, –½ + 

6 y, 1.5 – z) = 3.136 Å, C–H∙∙∙S = 155.36°] (Figure 7A). Additionally, each complex molecule 

7 is involved in four C–H/Pd interactions with two adjacent molecules [C2–H2A/Pd1 (x, 1 + y, 

8 z) = 3.785 Å, C–H∙∙∙Pd = 140.08°] where in two interactions is hydrogen bond donor and in 

9 other two is an acceptor (Figure 7B). Also, each molecule of 2 interacts thorough three C–

10 H/Cl contacts [C1–H1A/Cl1 (1 – x, 1 – y, 1 – z) = 2.996 Å, C–H∙∙∙Cl = 153.78°;  C1–

11 H1B/Cl1 (x, 1 + y, –1 + z) = 2.858 Å, C–H∙∙∙Cl = 144.51°; C2–H2A/Cl1 (x, 1.5 – y, –½  – z) 

12 = 2.888 Å, C–H∙∙∙Cl = 132.87°] (Figure 7C)  and one C–H/π contact [C4–H4A/Cg (1 – x, 1 – 

13 y, – z) = 3.087 Å, C–H∙∙∙Cg = 132.61°; Cg is centroid of carbonitrile bond] (Figure 7D).

14
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1

2 Figure 7. C–H/S (A), C–H/Pd (B), C–H/Cl (C) and C–H/π (D) interactions in the crystal 

3 packing of 2.

4

5 Powder XRD measurements (Figure S3, ESI) show that both 1 and 2 crystallize as a 

6 pure single phase in the powder. These phases correspond to the single-crystal structures 

7 described above. Figure S4 (ESI) shows comparison between experimental powder XRD 

8 diffractograms of 1 and 2 with simulated ones of their analogues with different TM-CN 

9 conformation of M‒S bond with respect to the ring chair conformation. These show that there 

10 are significant differences in the powder XRD diffractograms between the two structures with 

11 the same metal ion, indicating that a possible mixture of phases would be relatively easily 

12 identified in the powder XRD, in particular through appearance of most intensive peaks in 5-

13 10o 2θ region. Since experimental powder XRDs (Figures S3 and S4, ESI) do not show any 
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1 peaks of the second predicted phase, this indicates that 1 and 2 crystallize as a single phase – 

2 axial conformer for Pt(II) and the equatorial one for Pd(II).

3 Since these complexes were obtained as well-formed single crystals, they do not 

4 exhibit any particular observable morphological features that could be correlated to the 

5 energetic effects in their crystal structure (vide infra). Images of single crystals from optical 

6 microscope and SEM images of powdered samples used for XRD measurements are shown 

7 in ESI (Figures S5 and S6, respectively).

8

9 DFT calculations on solid state periodic and molecular systems 

10 In order to investigate which factors are driving the stability of crystal structures of 1 

11 and 2 in the solid state, DFT calculations were performed on molecular systems and solid 

12 state periodic systems of Pt and Pd in both axial and equatorial conformers (Table 3). 

13 Optimized structures with axial position of M‒S bonds with respect to the TM-CN ring chair 

14 conformation are more stable than the optimized structure with the equatorial position. The 

15 energy difference between axial and equatorial conformers of Pt(II) is slightly larger (3.31 

16 kcal/mol) than in the case of Pd(II) conformers (3.06 kcal/mol). DFT calculations on a 

17 periodic system were conducted using PBE0 functional with norm-conserving 

18 pseudopotential for better accuracy of calculated energies.48 The results show that the axial 

19 conformer is more stable for Pt(II) complex, while the equatorial one is more stable for Pd(II) 

20 complex (Table 3), which is consistent with experimentally obtained structures, both in the 

21 powder and single crystal experiments. Comparison with the energy differences from the 

22 molecular calculation show the extent of the influence of intermolecular interactions in the 

23 crystal structure. For Pt(II) complex, the preferred conformation does not change, while the 

24 energy difference between axial and equatorial complexes increases by about 18.4 kcal/mol. 

25 On the other hand, for Pd(II) complex, the most stable structure changes from axial to 

26 equatorial, with change in energy difference between two configurations totaling around 5.1 

27 kcal/mol. This suggests that intermolecular interactions in Pt(II) and Pd(II) complexes 

28 stabilize different conformers – axial for Pt(II) and equatorial for Pd(II). In case of Pd(II), 

29 that change is large enough to change the most stable conformation to the equatorial one.

30
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1 Table 3. Lattice parameters and calculated energies for crystal and molecular structures for 

2 equatorial and axial conformers of Pd(II) and Pt(II) complexes. Energy differences between 

3 corresponding structures are shown as ΔE (lattice parameters for axial conformers represent 

4 the primitive lattice).

Complex Space 

group

a (Å) b (Å) c (Å) α (°) β (°) γ (°) ΔE 

(kcal/mol)

crystal

ΔE 

(kcal/mol)

molecule

1 I 2/a 10.1930 10.1930 16.0148 48.5 48.5 66.8 0.00 0.00

1-eq P 21/c 11.4399 7.0711 9.5192 90.00 96.2 90.00 21.70 3.31

2 P 21/c 11.3992 8.2607 10.0984 90.00 94.2 90.00 0.00 0.00

2-ax I 2/a 11.2667 11.2667 18.5256 40.7 40.7 56.0 1.96 ‒3.06

5

6 Hirshfeld surface and fingerprint plot analysis

7 Hirshfeld surface and fingerprint plot analysis29,49 allow visualization, quick and easy 

8 understanding of intra- and intermolecular interactions in the crystal structures. Before 

9 calculating the surfaces, the lengths of C‒H bonds are normalized to standard values 

10 determined by neutron diffraction. Hirshfeld surfaces and pseudosymmetric 2D fingerprint 

11 plots,50 existing classical and non-classical interactions and relative contributions to the 

12 Hirshfeld surface for the major intermolecular contacts in the crystal structures of 1 and 2 are 

13 depicted in Figures 8 and 9, respectively. In both complexes the interactions can be observed 

14 in the shape-index plot as red and blue relief regions, as well as in the curvature plot as a flat 

15 zone in the same position of the surface like in the shape-index plot. Regions on the surfaces 

16 through which the complexes interact are marked with white circles.

17
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1

2 Figure 8. Fingerprint plot, Hirshfeld surfaces mapped with dnorm (two orientations), shape 

3 index and curvedness for 1.

4

5

6 Figure 9. Fingerprint plot, Hirshfeld surfaces mapped with dnorm (two orientations), shape 

7 index and curvedness for 2.

8 In the crystal structures, both complexes have the same four main types of 

9 interactions, which are within defined de + di distances (Table 4). The rest of the contacts that 

10 appear in the crystal structures of 1 and 2 are C–H/H and C–H/C contacts. It is apparent that 

11 there are some significant differences in interaction distances going from 1 to 2, like C‒H/M 
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1 interactions and C–H/N interactions. In addition, there are significant differences in 

2 contribution of individual interactions, with C–H/Cl interactions providing much higher 

3 contribution in 2, with shorter interaction distance. In order to investigate these differences 

4 and their influence on the structure of individual complexes in more detail, additional DFT 

5 calculations were performed on model systems for the four dominant types of interactions 

6 (vide infra).

7

8 Table 4. Overview of the main types of intermolecular interactions obtained from Hirshfeld 

9 analysis

de + di (Å) Contribution (%)Interactions

1 2 1 2

C‒H/Cl 3.10 2.85 15.6 20.1

C‒H/S 3.20 3.30 8.0 5.4

C‒H/M 3.40 3.80 1.4 0.8

C‒H/N 3.10 2.45 30.1 27.6

10

11

12 Analysis of C–H/Cl–M, C–H/S–M, C–H/M, and C–H/NC interactions

13 The study of packing in the crystal structures of 1 and 2 has shown that arrangement 

14 of molecules is governed by several non-covalent interactions, where C–H/Cl–M, C–H/S–M, 

15 C–H/M, and C–H/NC interactions have a significant contribution. In order to describe the 

16 geometries of these interactions, a CSD search was performed to gather information about 

17 non-covalent interactions.51 Intermolecular C–H/Cl–M, C–H/S–M, C–H/M, and C–H/NC 

18 interactions can be characterized as weak hydrogen bonds, because most of the interactions 

19 occur at distances larger than 2.5 Å (Figure 10). Of these four types of interactions, the C–

20 H/NC and C–H/Cl–M interactions occur at the shortest distance range, while the C–H/M 

21 interactions occur at the longest distance range, regardless of the charge of metal ion [M(I), 

22 M(II), or M(III)]. Therefore, it can be assumed that the strength of C–H/S–M interactions lies 

23 between these interactions. The distributions of α angle (the angle of the hydrogen bonds) 

24 show no tendency towards a linear orientation of interacting species (160° α 180°), due to 

25 the tendency of interacting species (M, XH, M–Cl, M‒S and CN groups) to form a 
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1 simultaneous interactions in the crystal structures over long d distances. This is in agreement 

2 with previous crystallographic analysis of C–H/X interactions (X = O, N, Cl and F) that 

3 showed a tendency of most acceptors for nonspecific interactions with many donors.46 The 

4 distribution of the α angle (Figure 10) shows that although there are differences in the trends 

5 across different interactions and different metal ion charges, they are relatively small.

6
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1 Figure 10. Distributions of d distances (the length of hydrogen bonds) and α angles (the angle 

2 of the hydrogen bonds) for intermolecular C–H/Cl–M, C–H/S–M, and C–H/M interactions in 

3 the crystal structures extracted from CSD.

4

5

6 The calculations for prediction of the strength of C–H/Cl–M, C–H/S–M, C–H/M, and 

7 C–H/NC interactions were performed on model systems (Figure 11) containing CH4 

8 molecule and [MCl2(TM–CN)2] complexes (M = Pd, Pt), where M acts as the acceptor in the 

9 hydrogen bonding. These calculations were performed only on equatorial conformers, in 

10 order to completely isolate individual interactions of the complexes with CH4. The results 

11 (Figure 12 and Table S4, ESI) show the dependence of the interaction energy on interatomic 

12 distance, where C–H/M interactions exhibit significantly higher energy values than other 

13 types of interactions. The strength of C–H/M interactions, with maximum values of –2.95 

14 kcal/mol for 1, and –2.84 kcal/mol for 2 (Table S4, ESI), should make them relevant to 

15 crystal packing. The increase in the distance between the C–H group and the metal ion results 

16 in the loss of interaction energy, which can be compensated by the increased opportunities for 

17 additional interactions.52

18
19 Figure 11. Model systems for energy calculations of C‒H/Cl–M (C‒H…Cl=180°, M–

20 Cl…H=180°), C–H/S‒M (C–H…S=180°, M–S…H=109°, Cl–M–S…H=90°), C–H/M (C–

21 H…M=180°, S–M…H=90°, Cl…S–M…H=90°), and C–H/NC (C–H…N=180°, CN…H=180°) 

22 interactions (M = Pd, Pt).

23
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1

2 Figure 12. The dependence of the hydrogen bond length (d) on the energy of C–H/Cl–M, C–

3 H/S–M, C–H/M and C–H/NC interactions (M = Pd, Pt), calculated on CH4/[MCl2(TM–

4 CN)2] model systems at wb97xd/6-31+g** +lanl2dz level of theory. 

5

6

7 The interaction strengths of intermolecular interactions from DFT calculation were 

8 then calculated for the corresponding distances observed in 1 and 2, using crystal geometries 

9 of axial and equatorial conformers obtained using PBE0 calculations. This suggests that these 

10 interactions should play an important role in determining the most stable crystal structure of 

11 the corresponding complexes (Table 5).  The results show that there is a significant difference 

12 in the energy of C–H/M interactions, where shorter Pt–H distance leads to around 1 kcal/mol 

13 higher energy of interaction. Coupled with stronger C–H/S interactions in 1, this indicates 

14 that Pt metal center and its immediate surrounding forms considerably stronger hydrogen 

15 bonds than Pd, which should be enough to affect the crystal structure of the complex and 

16 result in 1 having a different stable crystal structure than 2. This is in agreement with results 

17 of DFT calculations in a periodic system where 1 exhibits shorter C‒H/M hydrogen bonds 

18 than both the 2-ax and 1-eq (Table S5, ESI). The latter two structures exhibit similar M‒H 

19 hydrogen bond length as the equatorial conformer of Pd complex. Considering also that the 

20 energy difference between two structures of Pt conformers is an order of magnitude larger 

21 than the difference between two structures of  Pd conformers (Table 5), all of this suggests 

22 that the hydrogen bond interactions with the metal center and its immediate surrounding 
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1 represent a major determining factor in the stability of the crystal structure of 1 and 2, and 

2 can be attributed in part for the difference in the crystal structure of these two complexes 

3 because stronger hydrogen bond interactions appear to favor the axial position of M‒S bond 

4 with respect to the ring chair conformation. On the other hand, Hirshfeld analysis has shown 

5 a higher contribution of C‒H/Cl interactions in 2, and they have been shown to exhibit longer 

6 interaction distances (Table 4). This suggests that while 1 is stabilized by hydrogen bonds on 

7 and around the metal center, 2 is stabilized by interactions with longer distances, which 

8 afford more opportunities for interactions, rather than stronger individual interactions.

9

10

11 Table 5. Interaction strength obtained from the crystal structure distances for 1 and 2.

distances (Å) Energy (kcal/mol) Interactions

1 2 1 2

C‒H/Cl 3.00 2.90 0.63 0.6

C‒H/S 3.20 3.15 0.9 0.75

C‒H/M 3.35 3.80 2.5 1.5

C‒H/N 2.90 2.75 0.55 0.57

12

13

14 A calculation of the energies of intermolecular interactions in the crystal structure for 

15 the axial and equatorial conformers of Pd shows that the intermolecular interactions stabilize 

16 the equatorial conformer of Pd complex more than its axial counterparts (Table 6).  The 

17 difference in the total energy of intermolecular interactions between two Pd conformers is 

18 about 10.7 kcal/mol, while the comparison of molecular and crystal structures in DFT 

19 calculation produced a difference of 5.1 kcal/mol in the relative stability of equatorial 

20 conformer in molecular and crystal system. This confirms that the interactions between the 

21 individual molecules in the crystal lattice are the deciding factor in the stability of individual 

22 crystal structures, rather than the stability of individual molecules that make up the crystal 

23 lattice.

24

25

26
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1 Table 6. Calculated values of intermolecular interaction energies for different crystal 

2 structures of Pd (in kJ/mol unless otherwise noted).

3
Symmetry operation R (Å) electronic polarization dispersion repulsive Total E
2-axial
‒ y+1/2, ‒ x+1/2, ‒ z+1/2 10.67 ‒ 8.3 ‒ 2.5 ‒ 9.1 4.4 ‒ 15.9
x, y, z 11.27 6.7 ‒ 0.9 ‒ 3.5 0.1 3.4
x, y, z 12.39 ‒ 18.6 ‒ 4.6 ‒ 11.9 8.8 ‒ 27.9
‒ y+1/2, ‒ x+1/2, ‒ z+1/2 5.15 ‒ 17.7 ‒ 3.2 ‒ 42.1 22.6 ‒ 43.8
x, y, z 10.58 ‒ 1.0 ‒ 0.5 ‒ 5.1 0.2 ‒ 5.8
‒ y+1/2, ‒x+1/2, ‒ z+1/2 11.76 ‒ 15.4 ‒ 3.7 ‒7.3 8 ‒ 20.4

Total energy of intermolecular interactions: ‒ 110 kJ/mol (‒ 26.4 kcal/mol)
2-equatorial
x, y, z 13.45 ‒ 19.3 ‒ 4.5 ‒21.4 19.5 ‒30.4
‒ x, y+1/2, ‒ z+1/2 13.33 ‒ 17.2 ‒ 4 ‒ 6 13.4 ‒18
x, y, z 11.44 7.1 ‒ 1.6 ‒ 6.4 0.7 1.2
x, y, z 7.07 ‒ 24.7 ‒ 9.7 ‒ 46.1 46.9 ‒ 44.4
‒ x, y+1/2, ‒ z+1/2 5.93 ‒ 34.3 ‒ 8.9 ‒ 47.8 51.7 ‒ 52.5
‒ x, y+1/2, ‒ z+1/2 11.63 ‒ 6.8 ‒ 2.1 ‒ 4.9 2.9 ‒ 11.2

Total energy of intermolecular interactions: ‒ 155 kJ/mol (‒ 37.1 kcal/mol)
4

5

6 Solution behavior

7 NMR spectroscopy was used to study a solution behavior and stability of the 

8 complexes. Thus, the NMR spectra of the ligand and the complexes were recorded in two 

9 different solvents – DMSO as a solvent with a coordinating ability and capability for a 

10 hydrogen bond formation and MeNO2 as a non-coordinating solvent with a low tendency for 

11 hydrogen bond formation. Assignments of signals in 1H and 13C NMR spectra of the ligand 

12 and the complexes are given in Tables S6 and S7 (ESI).

13 In the 1H NMR spectra of TM-CN in both solvents two signals are observed (Figure 

14 S7, ESI). A multiplet at a higher filed corresponds to the equivalent CH2 groups which are 

15 closer to the sulfur atom (- and ’-CH2), while a lower filed signal corresponds to the other 

16 two equivalent CH2 groups (- and ’-CH2). The shape of both signals can be described as a 

17 poorly resolved doublet of doublets originating from germinal and trans-diaxial couplings of 

18 adjacent CH2 groups. The 13C NMR spectra of TM-CN in both solvents (Figure S8, ESI) 

19 consist of three absorptions due to the ,  and carbonitrile carbon atoms of the ligand ring.

20 Analysis and interpretation of NMR spectra of the complexes requires consideration 

21 of possible conformations of the complexes. Conformational changes in the case of 1 and 2 
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1 can be derived by analogy with a similar system.53  They are caused by chair to chair reversal 

2 of TM-CN ring (R.R.) and pyramidal inversion at the coordinated sulfur atom (S.I.) (Scheme 

3 1A).53 The total number of conformers of each of the complexes is greater than those 

4 depicted in Scheme 1A where the conformation of one ligand ring is considered independent 

5 of the conformation of the other. Since conformers (i) and (iii) where M‒S bond is equatorial 

6 to the TM-CN ring or conformers (ii) and (iv) where the bond is axial (Scheme 1A) cannot be 

7 distinguished by 1H NMR spectroscopy,53 interconversion between averaged conformational 

8 isomers of the complexes can be represented as in Scheme 1B. 

9  

10
11

12 Scheme 1. Possible conformations of 1 and 2 (A). Intersonversion between averaged 

13 conformers of 1 and 2 (B). S.I. = Sulfur inversion, R.R. = ring reversal.

14

Page 29 of 40

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



30

1 In 1H and 13C NMR spectra of 1 in DMSO-d6 there are two sets of signals, indicating 

2 the presence of two species in solution - the free ligand and one complex specie (Figure S9, 

3 ESI). It is reasonable to assume that the complex specie in the solution represents the 

4 coordination entity where one of the coordinated TM-CN in 1 is replaced by the solvent 

5 molecule. In that case, according to the ratio of intensities of the signals in 1H NMR 

6 spectrum, in DMSO-d6 solution the ratio of amounts of free TM-CN and the complex specie 

7 is ca. 8.8 : 1.2. The existence of the free ligand and the complex specie in the solution is also 

8 evidenced by 2D NMR spectra (COSY, NOESY and 1H–13C HSQC, Figure S10–S12, 

9 respectively, ESI). In 1H and 13C NMR spectra of 1 in CD3NO2 there are also two set of 

10 signals (Figure S13, ESI). However, in this non-coordinating solvent the ligand dissociation 

11 does not occur. Two set of signals thus can be attributed to different conformers of 1, the 

12 axial conformer being the major one. In 1H NMR spectra of 1 in both solvents all signals are 

13 broad indicating the onset of the conformation shift (Scheme 1B) at a measurable rate on the 

14 NMR timescale. Yet, interconversion at room temperature is faster in DMSO probably due to 

15 the hydrogen bond formation ability of this solvent. 

16  1H NMR spectra of 2 in both solvents comprise of two very broad signals (Figures 

17 S14 and S15, ESI).  This indicates that at ambient temperature interconversion process is fast, 

18 thus the chemical shifts for all α and all β methylene protons are averaged. The 13C NMR 

19 spectra of 2 (Figure S14 and S15, ESI) consist of three absorptions due to the ,  and 

20 carbonitrile carbon atoms of coordinated ligand.

21

22 CONCLUSION

23

24 Complexes 1 and 2, with general formula [MCl2(TM‒CN)2], were obtained by 

25 reaction of TM–CN with K2[MCl4], where M = Pt or Pd. Both complexes crystallize in the 

26 monoclinic crystal system, but in different space groups. In order to determine the factors 

27 leading to the different crystal structures with different metal ion, an in-depth theoretical 

28 investigation was conducted, examining the structure of two complexes and comparing them 

29 with hypothetical structures with the same metal center and different position of M‒S bonds 

30 with respect to the ligand chair conformation. It was determined that the most stable 

31 molecular structure implies the coordination of TM–CN via sulfur atom to both Pt(II) and 

32 Pd(II) with the axial position of M‒S bond in respect to the ligand chair conformation, 

33 although the energy differences between two structures were around 3 kcal/mol. This small 
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1 energy difference proved significant as the calculations in the crystal system revealed that the 

2 most stable conformers were the axial one for 1 and the equatorial one for 2, corresponding to 

3 the experimentally obtained structures. Comparison of calculations in the molecular and 

4 crystal systems revealed that it is likely that intermolecular interactions stabilize the axial 

5 conformer for Pt(II) and equatorial one for Pd(II), leading to a change in the most stable 

6 conformation from axial to equatorial in the case of Pd(II). This was confirmed using 

7 calculations of intermolecular interaction energy in the crystal, where equatorial Pd(II) 

8 systems exhibited higher values of intermolecular interaction energy than its axial 

9 counterpart. The magnitude of differences in intermolecular energy between the 

10 corresponding axial and equatorial conformers was in general agreement with the results of 

11 DFT calculations in molecular and crystal systems. The strength of individual interactions in 

12 1 and 2 was calculated using a series of model systems in order to determine the particular 

13 type of interaction responsible for the differences between two metal complexes. The 

14 difference in the crystal structure of two complexes can be attributed in part to the apparent 

15 inability of Pd(II) system to form shorter distance C–H/M interactions in the axial 

16 conformation, where interaction distances remain relatively the same as in the equatorial 

17 conformation, combined with generally weaker C–H/S interactions. The equatorial conformer 

18 is then stabilized by increased opportunities for longer range interactions, like increased 

19 contribution of C–H/Cl interactions, effecting a change in the most stable conformer going 

20 from a molecular to a periodic crystal system. 

21
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