J. Serb. Chem. Soc. 65(1)15-25(2000) UDC 549.5(546.42):66.094.3:546.35(54-44)
JSCS-2721 Original scientific paper

Characterization and carbon monoxide oxidation activity of
La1—SryCr1—xRuxO3 perovskites

A. TERLECKI-BARICEVIC, S. PETROVIC, D. JQYANOVIC, LJ. KARANOVIC”
and C. MARINOVA

ICTM-Department of Catalysis and Chemcial Engineering, NjegoSeva 12, YU-11000 Belgrade,
*Laboratory of Crystallography, Faculty of Mining and Geology, University of Belgrade, Pusina 7,
YU-11000 Belgrade, Yugoslavia and * Institute of General and Inorganic Chemistry, BAN,
1113 Sofia, Bulgaria

(Received 6 July 1999)

The oxidation of CO over Laj-,Sr,Cri-xRu,O3 perovskite type oxides with y=0.3
and 0 £ x £ 0.100 have been studied. X-ray fluorescence analysis confirmed that content
of elements in the bulk corresponds to the established nominal perovskite stoichiometry,
indicating that no significant oxidation of ruthenium into volatile polyvalent oxides with
their consequented escape from the sample occurred in air up to the temperature of
1000 °C. According to X-ray diffraction analysis, all sampls achieved the perovskite
hexagonal with the presence of some SrCrO4. X-ray photoelectron spectroscopy analy-
sis of ruthenium samples shows higher Ru and Sr surface concentraitions than in the
bulk. The binding energy for Rusp is virtually the same in all samples and consistent
with that of Ru* (463.6—464.3¢V). Kinetic studies were performed in a differential
rec;icle reactor with a recycling ratio 80. The results show that substitution of Ru*" for
Cr’ inLaj.,Sr,CrOs3 leads to a significant increase in both the activity and the activation
energy. The global CO oxidation rate, referred on the BET surface area, correlates with
the surface Ru*" atomic concentraiton. Hence, the activity reflect the surface enrichment
in ruthenium. Moreover, an identical apparent activation energy £ = 93 kJ/mol and the
same specific rate per ruthenium surface ion were obtained for samples with a Ru content
x F0.05 suggest that exposed Ru*" ions mainly participate in the reaction.
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Studies of perovskite type catalysts (ABO3) with a rate earth ion in the A site
and a transition metal ion in the B site have concentrated on the complete oxidation
of CO and hydrocarbons and reduction of NOy particularly related to auto exhaust
control.!-2

In our pervious papers> > we reported on the activity of a series of LaMO3
(M = Co, Cr and Cu) perovskites and mixed oxides Laj—Sr;MO3 (M = Cr and Ru)
in the simultaneous oxidation of CO and hydrocarbons and reduction of NO, with
controlled compositions of the gas mixture around the stoichiometric ratio of

15



16 TERLECKIABARICEVIC et dl.

oxidizing to reducing agents. The investigations were performed in a pulse-flame
catalytic system® with a feed gas obtained by combustion of 2,2,4 trimethylpentane
(isooctane) containing about 11 vol.% of HO and also in a dry synthetic gas mixture.

According to the results on LajSr,CrixRuyO3 (0.05 £x£ 0.100) mixed oxides,
under net reducing conditions, an unexpected higher conversion of CO and a higher
concentration of hydrogen in the outlet reaction gases were obtained in the presence
of water vapor compared to those observed in the synthetic dry reaction mixture.
These effects were ascribed to the water-gas shift reaction, catalyzed by ruthenium
ions. Furthermore, the hydrogen formed in the water gas shift reaciton, absorbed on
the surface in the dissociative form, could be a reason for the high conversion of
NOx observed on ruthenium perovskites under net oxidizing conditions.

This paper presents the CO oxidation activity of perovskite type oxides

Laj4SrCrixRuyO3 with y = 0.3 and 0 £x £ 0.100. The results are discussed in
relation to the bulk and surface composition and the oxidation state of the cations
in samples with different Ru content.

EXPERIMENTAL

Catalyst preparation

A series of perovskite type oxides Laj-,StCrixRuyO3 containing a constant content of Sr (y =
0.3) and with x ranging from 0 to 0.100 was prepared from La203, Cr203, RuO; and StCO3 of analytical
grade quality by solid state processing. The respective amounts of the constituent oxides and carbonates
were mixed in ethanol and sintered. The temperature of calcination was increased stepwise up to
1000 °C. Cycles of grinding and heating were performed at the chosen temperatures to ensure
homogeneity and to complete the reaction.”

Characterization of catalyst

The chemical composition of the samples was determined by X-ray fluorescence analysis
(XRF), using a System Cambera Model 7333 E. The phase composition ofthe samples was investigated
by X-ray diffraction alaysis (XRD) of powdered samples using a Philips PW 1710 diffractometer, with
CuKa graphite-monochromatized radiation (40 kV, 30 mA). The lattice constants were calculated by
the least squares method (program LSUCRIPC).3 X-ray photoelectron spectra (XPS) were recorded
on a VC Escalab II spectrometer with MgKa radiation (1253.6 eV) at a pressure of 4- 10°!! Torr and
an instrumental resolution for Ag 3d3/2 line 0.9 eV. The normalized XPS intensities 1/S, which are
proportional to the effective concentraitons of the corresponding elements in the surface layers,” were
determined as the integrated peak areas divided by the correspoding photon ionization cross section
.10 In the peak area computation, the background was assumed to be linear.

The specific surface area of the samples was measured using the BET method.

Catalytic tests

The kinetics of carbon monoxide oxidation was measured in an integrated-external recycle
reactor. A detailed description of the apparatus has been given elsewhere.!!12 A reaction gas mixture
containing 1 vol.% CO and 1 vol.% O was fed at constant flow rate of 10 /h. The recycling ratio of
80 was maintained constant to obtain gradientless conditions in all catalytic runs. The gas composition
was analyzed before and after the reaction by an online gas chromatograph (Shimadzu GC-8A)
interfaced with an automatic integrator. The global reaction rate was calculated using the equation:

r= ((coco— Ceo)/W) I
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where ¢ and cco are the concentration of CO (VOl.%g in the inlet and the outlet, respectively, w is
the mass (g) of catalyst, and F is the feed flow rate (cm’/s).
RESULTS AND DISCUSSION

The atomic concentrations of elements in the bulk (XRF) and the surface
layers (XPS) of the ruthenium perovskites are given in Table 1.

TABLE 1. Bulk and surface concentratoins of the elements in La; ,Sr,Cr; »Ru,O3 (y=0.3;0.025 £ x
£ 0.100) samples

Bulk concentration (at.%) Surface concentration (at. %)

Y la_ st G Ru__O La S C_ Ru__O
0.025 14.0 6.0 19.5 0.5 60.0 10.0 7.2 9.8 0.8 72.2
0.050 14.0 6.0 19.0 1.0 60.0 11.0 7.8 10.0 2.0 69.2
0.075 14.0 6.0 18.5 1.5 60.0 9.4 8.9 9.2 3.6 68.9
0.100 14.0 6.0 18.0 2.0 60.0 8.1 11.1 9.5 3.8 67.5

The content of elements in the bulk corresponds to the composition of the
initial mixture of the samples, i.e., to the nominal perovskite stoichiometry Laj—y,
SryCr1-xRuxO3 with y = 0.3 and x varying in the range 0.025 £ x £ 0.100. Moreover,
the very good agreement between the amounts of ruthenium taken and those found
in the systems obtained after heating at 1000 °C in air, indicates that no significant
oxidation of ruthenium into volatile polyvalent oxides RuO3 and RuQO4 and their
consequental escape from the sample occurred under the oxidation conditions. This
is the main problem in the case of supported ruthenium catalysts. In the following
figures and tables all the synthesized ruthenium perovskite catalysts are denoted
according to the nominal perovskite stoichiometry.

On the XRD pattern (Fig. 1) of the sample without Sr, only perovskite phase
LaCrO3 was identified. The unambiguous phase identification of a few very weak
peaks was not possible. The X-ray diffraction peaks of LaCrO3 were completely
indexed from a cubic symmetry with lattice parameter a = 3.8847(6)A. In all samples
with La partly substituted by Sr in A site, however, weak diffraciton peaks attributed
to SrCrOg4 were detected together with the perovskite ones. Thermal treatment of
the samples in air resulted in the oxidation of part of the Cr3* to Cr%" which reacted
with strontium carbonate forming a SrCrOy4 phase.!3 In the ruthenium containing
samples no peaks corresponding to RuO; or other component single oxides were
detected. Since, according to chemical analysis, almost all ruthenium remained in
the samples, the formation of very small RuO; perticles, which could not be detected
by XRD, due to their strong tendency to volatilization under oxidizing conditions,
can be excluded. Hence, it can be considered that the ruthenium is incorporated in
the perovskite structure.

The formation of SrCrO4 as a separate phase implies a decrease in the Sr and
Cr content in the perovskite phase.
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Fig. 1. XRD powder patterns of Lag 7Sr¢ 3CrixRuxO3 (0.025 £ x £ 0.100).
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Fig. 2. Photoelectron spectra of Crzp, of La1,S1,CrixRuxO3 (0.025 £ x £ 0.100).
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The Crap photoelectron spectra (Fig. 2) exhibit two peaks with BE of 576.5
eV and 579.9 eV, characteristic for Cr>" and Cr%, respectively. Standardization of
the peaks gave about 20% contribution of Cr®" to the total amount of chromium in
the surface layers in all synthesized samples. This is in good agreement with the
estimation of the relative bulk content of the SrCrO4 phase.

The absence of other isolated phases of the individual oxides, which should
crystallize out at the calcination temperature of 1000 °C, implies that chromium and
equivalent amounts of strontium are distributed in the perovskite and strontium
chromate phases. Assuming that 20% of the total amount of Cr (all the formed Cr®")
and an equivalent amount of Sr2* are bonded in SrCrOy the calculated average
content of Sr in the Laj—,Sr,Cr1—Ru,O3 perovskite phase significantly decreases
fromy=0.3 toy=0.14. Accordingly the La/Srratio in the perovskite phase increases
from a nominal 2.33 to 6.14.

This is consistent with the lattice parameters of the perovskites Laj—,SryRuy
Cr1-O3, which are given in Table IL

TABLE II. The unit cell parameters of the perovskite phase occurring in the synthesized La; ,Sr,
Cri—RuO3 samples

The composition of the initial Lattice parameters

mixtures Volume (A%) Reference
y x a(A) A
0 0 5.494" 13.458"  352[6-58.62(3)] this paper
0.3 0.100 5.482(3) 13.504(9) 351.4(4) this paper
0.3 0.075 5.478(4) 13.495(9) 350.7(4) this paper
0.3 0.050 5.474(4) 13.48(1) 349.7(5) this paper
0.3 0.025 5.475(3) 13.488(7) 350.2(3) this paper
0.3 0 5.466(3) 13.49(1) 349.2(4) this paper
0.25 0 5.493-0.002" 13.301-0.006 348 JCPDS 32-1240

#Calculated from cubic cell with a = 3.8847(6) A using equations a = a - (2)1/2 and c=ac - (3)1/2/2.
*Actually, 5.403-0.002 A was reported (Khattak,m) but this is probably a typing error, because the
calculated parameter of the hexagonal unit cell from the rombohedral lattice parameters is a =2 -
5.451 - sin(30.255)=5.493 A,

The observed diffraction peaks of the perovskite phase are mostly broad and
asymmetric but not split very well suggesting that the perovskite lattice is slightly
distorted compared to an ideal cubic structure. The lattice parameters of the
hexagonal perovskite unit cell are very similar for all investigatged samples.
Moreover, their unit cell volumes are between the LaCrO3 and the Lag 755r0.25CrO3
volume.!4 This is in agreement with the previous conclusion concerning the forma-
tion of the perovskite phase with a lower content of Sr (y = 0.14) than expected (y
= (.3) according to the overall metal content (Table I).

The Cr,,, binding energy values for Cr3* and Cr* are very close. Therefore, the
separation of tﬁe peaks was not possible with the resolution of instrument used. Decon-
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volution of the Cr3' peak, which is broad and asymmetric (Fig. 2), performed for the
sample x = 0.075, might be an indication of the possible presence of Cr*" ions (Fig. 3).

The binding energy for Rusy, (463.6-464.3 ¢V) is virtually the same in all

samples and it is consistent with that of Ru*" (Fig. 4).
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Fig. 4. Photoelectron spectra of Ruzp of Laj_,StyCr1.xRuyO3 (with 0.025 £ x £ 0.100).
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The calculated composition of the perovskite phases in the Laj—,Sr,Cr1—xRuO3
samples was made assuming that all Ru is incorporated in the perovskite and is presented
in Table II1.

TABLE I1I. Calculated composition of perovskite Laj-,SryCr1«RuyO3 phases

x Calculated composition of the perovskite phases d
0 3 La%('gi“Sr%('gl?Cf%%d 0.063
La™ 0.87551" 0.125Cr” 0.875Cr" 0.12503
0025 3'£4::13+0.se629§r2+0.13 3}+Cr3+0.962§u4+0.03 4{93'(’ 0.051
La” 0.869S1” 0.131Cr” 0.869Cr" 0.100Ru" 003103
0.050 3+Lal%o.xozaSr%o. |335+C1‘3+u.93§§u4+0.oo‘%+03-d 0.037
La™ 0.86551" 0.135Cr” 0.865Cr" 0.073RU" 0.06203
0075 3ga3+u.3529§1‘2+u.1431§r3+o.9u§§u4+o.u9%93-d 0025
La™ 0.859S1™ 0.141Cr” 0.859Cr " 0.049RU" 009203
0.100 La®" 0.85451% 0.146Cr> 0 878Ru*0.12203. 0.012

3+ 2+ + + +
La™ 0.854S1” 0.146Cr” 0.854C1" 0.024RU” 0.12203

The substitution of divalent Sr for trivalent La requires charge compensation,
which can be achieved by the formation of either tetravalent chromium or oxygen
vacancies.

The partial substitutution of divalent Sr for trivalent La in LaCrO3 leads to
the some decrease in unit cell volume despite the fact that Sr2* is a larger ion and
has a lower valence state. A probably explanation of this lies in the formation of
Cr*" (having a lower ionic radius than Cr3™) which compensates for either steric
and electronic effects of Sr2* doping. The formation of certain amount of oxygen
vacancies, however, can not be excluded.

However, the progressive substitution of Cr3* for Ru*" (having almost the same
ionic radius) in the B position of Laj—,Sr;CrO3 phase simply decreases the need for crtt
and causes an increase in the unit cell volume (Table II). As a result of the above effect, a
decrease in the Ru content reduces the unit cell volume to the smallest value for x= 0. The
further decrease of the unit cell volume observed in the sample with higher Sr content (y
=(.25) can be ascribed to the increase of Cr*" in the some proportion of the Sr2* content.

The O photoelectron spectra of the ruthenium catalysts (Fig. 5) indicate that
at least two kinds of oxygen species are present on the surface. The lower binding
energy of O15 (529.0-529.5 ¢V) is attributed to lattice oxygen. A shoulder around
BE = 530.5 eV, clearly pronounced only for the sample with x = 0.025 could be
assigned to the absorbed oxygen according to Seiyama.!?

Oxygen sorptive properties of LajSr,Cr1yRuxO3 (0 £ x £ 0.100) samples
in relation to stuctural defects and the role of absorbed oxygen in the activity and
kinetics of CO oxidation is the subject a separate study.

The stabilization of runthenium ions by incorporating them in the perovskite
structure enables the oxidation activity to be investigated with no significant loss of Ru.
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Fig. 5. Photoelectron spectra of O1s of La1,S1,Cr1.xRu,O3 (0.025 £ x £ 0.100).

The effect of temperature on the rate of CO oxidation was studied on La;_Sr,
CrO5 and a series of ruthenium samples in the temperature range of 100 °C to 300 "&
using a CO/O, = 1 reaction gas mixture.
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Fig. 6. Arrhenius plots of the global rate of CO oxidation on perovskite samples.



CARBON MONOXIDE OXIDATION 23

The specific surface area of all the synthesized samples was about 1 m%/g.
Therefore, the global rate of CO oxidation per gram or referred to the BET surface
area of the catalysts is practically the same.

The global CO oxidation rates and specific rates calculated per surface
ruthenium atom (taken from Table I), in Arrhenius form, are plotted in Fig. 6 and
Fig. 7, respectively. As can be seen from Fig. 6, even a small substitution of Ru*"
for Cr3" in the Laj—ySryCrO3 matrix results in an enhanced oxidation rate and in an
increase of the apparent activation energy from 56 kJ to 93 kJ. The strontium
chromate phase, stable to the temperature of 1250 °C'3 under oxidative conditions,
present in all samples in approximately the same amount, is not essential for the
activity. The global CO oxidation rate increases with further progressive substitution
of Ru** for Cr3™. However, the observed increase in the reaciton rate does not follow
the mole fraciton of Ru (x) in the bulk of the samples. Almost the same global rate
is obtained on the samples Rug.g75 and Rug. 100, with different degree of substitution
of Ru in the bulk.

The XPS results (Table II) revealed not only higher Ru and Sr and lower Cr and
La surface atomic concentrations in respect to those in the bulk, but also that samples
Rug 075 and Rug 100 had very similar surface concentrations of ruthenium ions.
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1/T103 samples.

These results indicated that surface Ru*" ion have an essential influence on
the overall activity. Moreover, samples with Ru mole fraction in the range 0.05 £ x
£ 0.100 exhibits nearly the same oxidation rate per Ru surface atom (Fig. 7). Since
no other oxidation states of Ru were detected on the surface layers, the oxidation
activity could be attributed to the Ru*" ion.

The identical apparent activation energy £ = 93 kJ/mol obtained on samples
with a ruthenium content in the range 0.05 £ x £ 0.100 and the very similar rate per
ruthenium surface ion suggest that all the Ru sites are exposed and that mainly these
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seats participate in the reaction. In accordance with the previous, it can be considered
that no significant segregation of ruthenium on the surface occurs and that matrix
effects arise from the fact that perovskite permits the high dispersion of Ru**.

It is interesting to realize the important difference in the specific activity of
the sample with the lowest ruthenium content (x = 0.025). The significantly lower
activity per ruthenium ion implies that not every exposed Ru** ions is active in CO
oxidation. Since, the same apparent activation energy was obtained for this sample
as for the samples with higher ruthenium contents, one of the possible explanations
of this difference in activity could be found in the distance of the Ru ions in the
perovskite phase. However, further work is necessary to clarify this point.

CONCLUSION REMARKS

The investigated catalysts, with the general formula Laj—,SrCr1—RuxO3 (0
£ x £0.100), achieved a perovskite phase with about 20 % of SrCrO4. The amounts
of metals, determined by XPS analysis of samples calcinated in air at 1000 °C,
correspond to the soichiometric values of the proposed chemical compositions. This
proves that the incorporation of Ru into a perovskite matrix prevents the oxidation
of ruthenium into volatile polyvalent oxides and their consequential escape from
the samples up to 100 °C.

XPS data indicate a surface enrichment in Ru and Sr. It can, furthermore, be
concluded that an increase in the global rate reflects the surface enrichment in Ru.
The invariance of the apparent activation energy and the specific rate, computed per
ruthenium surface atom in the samples, with a ruthenium content in the range 0.050
£ x £ 0.100, suggest the Ru*" ions are exposed and that they play a dominant role in
the reaciton.
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n3BO/

KATAJIMTUYKA CBOJCTBA La1ySryCrixRuxO3 IEPOBCKHUTA Y OKCUJJALIMI
YTIbEHMOHOKCHUIA

A. TEPJIIEIKU-BAPUYEBWH, C. IETPOBUh, /1. JOBAHOBUR, Jb. KAPAHOBUR* u II. MAPUHOBA**

VIXTM llenTap 3a KaTaausy H XeMHjCKO HHXKEmbepcTBo, Iberomesa 12, 11000 Beorpag, *JTaGopaTopuja 3a
kpucranorpadujy, Pynapcko-reonomku cakynrer, Y nusepsurera y beorpany, hymmuna 7, 11000 beorpap,
**VIHCTUTYT 3a ONMIITY U HeopraHcky xemujy, BAH, 1113 Coduja, Byrapcka

IIpeaMeT OBOT pajia je HCIUTHBAMEe KaTaTNTHIKEe aKTHBHOCTH MEITaHUX oKchpaa Laj-y
SryCr1-xRuxO3 cTpykType neposckuta cay = 0,31 0,025 £ x £ 0,100 y okcupanuju yribe HMOHOK-
cupia. Brcoka carmacHocT yHeTe B X-(hIlyOpOCIEHTHOM aHAIM30M HabeHe KOJIMIIHe pyTeHH-
jymay y3opumma kammuarcaanM Ha 100 °C y Ba3fyxy, yKa3yje Ha TO Ia HHje IOILIO 10 3HAvYajHe
okcujanuje RuU 10 ucnap/buBUX IIOJIMBATICHTHUX OKCHJIA M HbUXOBOT OTIIapaBarha U3 y30pKa.
Amnanusa judpakrorpama X-3paka je nokasajia jia je y CBUM y30pLuMa 1opej| IepOBCKUTHE



CARBON MONOXIDE OXIDATION 25

¢aze mpucytan u Mamwu yaeo SrCrO4daze. KonnenTpanmje Sr u RU y MOBPIIMHCKAM CIIOjeBAMa,
m3pauyHaTe U3 X-(pOTOENTEeKTPOHCKE CIEKTPOCKONHje, ¢y Behe y OTHOCY Ha IbHXOBY KOHIICH-
Tpanujy y Macu. EHepruja Bese Rugp je mcTa 3a cBe y30pKe I KapaKTEpHCTHIHA je 3a Ru**.
Kunernka oxcujanmje yribeHMOHOKCH/IA UCIIUTHBAHA je Y (e peHIIMjalTHOM PELUPKYIaly-
OHOM peakTopy. Pesynraru nokazsyjy na neaumuyna 3amena Cr *caRu* y La1-ySryCrO3 nosopu
J10 3HATHOT NOpacTa aKTMBHOCTU M €HEpruje akTupanuje. YKynHa Op3una okcupaunuja CO,
oOpauyHaTa IO jeiNHANN crienuIIHe NOBPIINHE, je CKOPO IPONOPIHOHAIHA IOPACTy aTOM-
CKE KOHLICHTpauje Ru*" na NOBPIINHM Y30pKa, OfHOCHO Rux 1 0,05 fo6uBeHa je ucra npuBuiHa
eHepruja aktuBanyje of E = 93 kJ/mol u ucra cnenuduysa 6p3uHa OKCUAIH]jE O TOBPIITHH-
ckom jory Ru*", mro ykasyje a 10 a cy jonn Ru** n3noskenn u ga onn [IPEBACXOJIHO YUECTBY]Y
y peaKuyju.

(ITpumibeHo 6. jyma 1999.)
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