

27th-28th September 2018 Belgrade, Serbia Editors

Vesna Spasojević-Brkić Mirjana Misita Dragan D. Milanović

7th INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ENGINEERING - SIE 2018, PROCEEDINGS

Publisher

Faculty of Mechanical Engineering, Belgrade

Printing firm "PLANETA PRINT" d.o.o. Beograd

Published 2018 ISBN 978-86-7083-981-6

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

005.22(082) 658.5(082) 006.83:338.45(082)

INTERNATIONAL Symposium of Industrial Engineering (7; 2018; Beograd)

Proceedings / 7th International Symposium of Industrial Engineering -SIE 2018, 27th-28th September 2018, Belgrade, Serbia ; [organizers] Industrial Engineering Department, Faculty of Mechanical Engineering, University of Belgrade [and] Steinbeis Advanced Risk Technologies, Stuttgart, Germany [and] Innovation Center of The Faculty of Mechanical Engineering, University of Belgrade ; editors Vesna Spasojević-Brkić, Mirjana Misita, Dragan D. Milanović. - Belgrade : Faculty of Mechanical Engineering, 2018 (Beograd : Planeta Print). - [10], 263 str. : ilustr. ; 30 cm

Tekst štampan dvostubačno. - Tiraž 100. - Str. [6]: Preface / editors. -Napomene i bibliografske reference uz radove. - Bibliografija uz svaki rad.

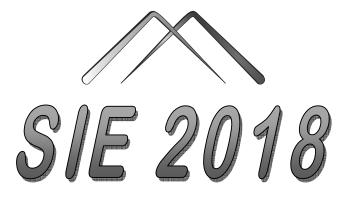
ISBN 978-86-7083-981-6 а) Производња - Организација - Зборници b) Индустријски менаџмент -Зборници c) Индустрија - Систем квалитета - Зборници COBISS.SR-ID 267659020

Sponzored by Government of the Republic of Serbia Ministry of Education, Science and Technological Development

Covernment of the Republic of Serbia Ministry of Education, Science and Technological Development

Organizers of SIE 2018:

INDUSTRIAL ENGINEERING DEPARTMENT, FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BELGRADE, SERBIA & STEINBEIS ADVANCED RISK TECHNOLOGIES, STUTTGART, GERMANY & INNOVATION CENTER OF THE FACULTY OF MECHANICAL ENGINEERING, UNIVERSITY OF BELGRADE


Program Advisory Committee

Chairperson: Spasojević-Brkić Vesna, FME, Belgrade, SERBIA; Jovanović Aleksandar, Stuttgart University, Stuttgart, GERMANY

- Babić Bojan, FME, UB (SRB)
- Bragatto Paolo, INAIL (ITA)
- Buchmeister Borut, University of Maribor (SLO)
- Bugarić Uglješa, FME, UB (SRB)
- Casadesus Marti, Universidad de Girona (ESP)
- Csetverikov Dmitrij, Hungarian Academy of Sciences, Institute for Computer Science and Control (HUN)
- Cockalo Dragan, TF "Mihajlo Pupin", UNS (SRB)
- Dondur Nikola, FME, UB (SRB)
- Dźwiarek Marek, Central Institute for Labour Protection – National Research Institute (POL)
- Engh Erik, Web-Dev, Oslo (NOR)
- Ferreira Pedro, Instituto Superior Técnico, Lisbon & FEES (PRT)
- Filipović Jovan, FOS, UB (SRB);
- Francalanza Emmanuel, FE, University of Malta (MLT)
- Gane Patrick, OY, Oftringen (CHE)
- Karapetrovic Stanislav, University of Alberta (CAN)
- Klarin Milivoj, TF "Mihajlo Pupin", UNS (SRB)
- Kreiner Jesa, California State Universitiy, Fullerton (USA)
- Lalić Bojan, FTS, UNS (SRB)
- Majstorović Vidosav, FME, UB (SRB)
- Milanović D. Dragan, FME, UB (SRB)
- Milazzo Francesca Maria, UM (ITA)

- Milosavljevic Pedja, FME, UN (SRB)
- Mitrović Radivoje, FME, UB (SRB)
- Minovski Robert, FME, Skoplje (MKD)
- Misic Dimic Katarina, Aalto University (FIN)
- Misita Mirjana, FME, UB (SRB)
- Nunes Lopes Isabel, FCTUNL, Lisbon (PRT)
- Petrović Dušan, FME, UB (SRB)
- Popović Predrag, Institute Vinča (SRB)
- Putnik Goran, Universidade de Minho (PRT)
- Radenovic Stojan, FME, UB (SRB)
- Radojević Slobodan, FME, UB (SRB)
- Rakonjac Ivan, Serbian Innovation Fund (SRB)
- Rožić Tomislav, FTTS, Zagreb (CRO)
- Shuman Rutar Teodora, Seattle University (USA)
- Sibalija Tatjana, MU, Belgrade (SRB)
- Tadic Danijela, FEM, Kragujevac (SRB)
- Tanović Ljubodrag, FME, UB (SRB)
- Uzunovic-Zaimovic Nermina, FME, Zenica (BIH)
- Valis David, UD (CZE)
- Váncza József, MTA SZTAKI (HUN)
- Veljković Zorica, FME, UB (SRB)
- Mihajlović Ivan, TFB, Bor (SRB)
- Zajac Mateusz, PW, Wroclaw (POL)
- Živković Živan, TFB, Bor (SRB)
- Žunjić Aleksandar, FME, UB (SRB)
- Xiao-Guang Yue, IETI, Hong Kong (CHN)
- Weiss John, University of Bradford, Bradford (UK)

- Organizing Committee
- Vesna Spasojevic-Brkic, PhD, Full Professor, FME, Belgrade, Serbia, Chairperson
- Mirjana Misita, PhD, Full Professor, FME, Belgrade, Serbia
- Sonja Josipović, PhD, FME, Belgrade, Assistant, Serbia
- Tamara Golubović, PhD, FME, Belgrade, Assistant, Serbia

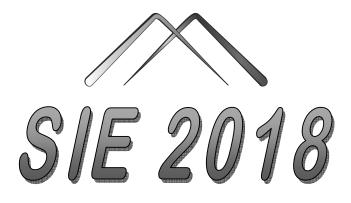
PREFACE

Since the first symposium in Belgrade, Serbia more than two decades ago, in 1996, International Symposium on Industrial Engineering - SIE has been held regularly every 3 years. It represents an opportunity for researchers in the Industrial Engineering community to review and evaluate their scientific achievements over the period since the previous SIE, share their most recent results and ideas, and discuss possibilities for new directions in research, joint experiments and observing campaigns.

The aim of the 7th International Symposium on Industrial Engineering – SIE 2018 is to contribute to a better comprehension of the role and importance of Industrial Engineering and to point out to the future trends in the field of Industrial Engineering. The Symposium is also expected to foster networking, collaboration and joint effort among the conference participants to advance the theory and practice as well as to identify major trends in Industrial Engineering today. According to these goals the Symposium addresses itself to all experts in all fields of Industrial Engineering to make their contribution to success and show capabilities achieved in the work that has been done are very welcomed. SIE 2018 provides an international forum for the dissemination and exchange of scientific information in industrial engineering fields through the large number of multidisciplinary topics.

The book brought together 58 papers and more than 170 authors from 12 countries, namely from Serbia, Portugal, Finland, Switzerland, FR Macedonia, Italy, United Kingdom, Thailand, Slovakia, Canada, Poland and Bosnia and Herzegovina. The submitted full length manuscripts were peer-reviewed, and selected for publication by experts in their respective fields. The authors ranged from senior and renowned scientists to young researchers. Only unpublished papers were accepted and the first author is responsible for the originality of the paper. All papers are classified into six chapters, including opening and closing plenary lectures.

We expect that papers and discussions will contribute to better comprehension the role and importance of Industrial Engineering in this and other countries, both in domain of scientific work and everyday practice.


Our efforts in organizing would not succeed without the considerable help of the members of Scientific Program and the financial help of Ministry of Education, Science and Technological Development was greatly supportive for the success of the entire project.

At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and to incentive further scientific development and creation of new papers in the field of Industrial Engineering.

Welcome to the 7th International Symposium on Industrial Engineering – SIE 2018! We wish to all participants a pleasant stay in Belgrade and are looking forward to seeing you all together at the 8th Symposium on Industrial Engineering – SIE 2021.

Belgrade, September 2018

EDITORS

- CONTENTS -

OPENING PLENARY SESSION - CHAIRPERSONS: Maria Francesca Milazzo, John Weiss, Paolo Bragatto, Ivan Rakonjac

1.	John Weiss ECONOMIC ANALYSIS OF PROJECTS AT THE ASIAN DEVELOPMENT	
	BANK	2
2.	Maria Francesca Milazzo, Paolo Bragatto	
	THE ITALIAN EXPERIENCE IN DEALING WITH THE ISSUE OF AGEING	
	MANAGEMENT IN THE PROCESS INDUSTRY	7

3. Ivan Rakonjac GOVERNMENTAL SUPPORT OF INSTITUTIONAL COOPERATION BETWEEN SCIENCE AND SMALL AND MEDIUM-SIZED BUSINESSES IN SERBIA 11

SESSION A1 - CHAIRPERSONS: Dragan D. Milanović, Sanja Stanisavljev, Dragan Ćoćkalo

4.	Dragan Ćoćkalo, Mihalj Bakator, Dejan Đorđević, Miloš Vorkapić	
	A SYSTEMATIC LITERATURE REVIEW IN THE DOMAIN OF ISO 9001	
	CERTIFICATION AND BUSINESS IMPROVEMENT	16
5.	Svetlana Dabić-Miletić, Momčilo Miljuš, Dragan D. Milanović	
	SOME POSSIBILITIES OF THE IMPACT ON GrSCM	20
6.	Ivan Tomašević, Dragoslav Slović, Barbara Simeunović, Dragana Stojanović	
	USING VALUE STREAM MAPPING AND FIVE FOCUSING STEPS FOR	
	INCREASING CAPACITY IN CONFECTIONARY INDUSTRY	24
7.	Sanja Stanisavljev, Milivoj Klarin, Dragan Ćoćkalo, Dejan Đorđević, Mila Kavalić	
	SMALL AND MEDIUM SIZED ENTERPRISES AND LEAN CONCEPT	28
8.	Sanja Stanisavljev, Arben Lunjić, Željko Stojanović	
	MODERN PRODUCTION CONCEPTS	33
9.	Elizabeta Mitreva, Elena Lazarovska, Oliver Filiposki, Hristijan Gjorshevski	
	THE ROAD TO PERFECTION THROUGH CONTINUOUS IMPROVEMENT	ГOF
	THE BUSINESS PROCESSES IN THE HOTEL A- ROSA	36
10).Nikola Petrović, Dragana Sajfert, Dragica Ivin, Marija Mjedenjak	
	IMPLEMENTATION OF SIX SIGMA AND LEAN PRODUCTION CONCEPT	ΓS IN
	ORGANIZATIONS: A REVIEW OF CONCEPTS	40
11	l.Mihajlo Aranđelović, Simon Sedmak, Snežana Kirin, Tamara Golubović, Branislav E)orđević
	LEAN APPROACH TO RECURMENT STRATEGY – CASE STUDY	43

12. Simon A. Sedmak, Mihajlo Aranđelović, Snežana Kirin, Branislav Đorđević, Tamara	
Golubović	
LEAN START-UP APPROACH TO SALES – A CASE STUDY	46
13. Snezana Kirin, Sandra Kirin, Simon Sedmak, Mihajlo Aranđelović	
LEAN APPROACH IN THEORY AND PRACTICE	50
14. Vladimir Ilin, Dragan Simić	
THE COMPARISON OF THE USE OF E-BUSINESS AND E-COMMERCE IN	
COMPANIES IN SERBIA AND IN EUROPEAN UNION COUNTRIES	54
15.Milica Gerasimovic, Ugljesa Bugaric	
COLLABORATIVE PARTNERSHIP FOR VOCATIONAL TEACHERS'	
PROFESSIONAL DEVELOPMENT IN MECHATRONICS	58
16.Dejan Đorđević, Bojan Perić, Miloš Vorkapić, Dragan Ćoćkalo	
CAD/CAM TOOLS IN RISK ANALYSIS DURING DESIGNING PROCESS	62

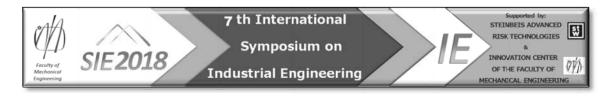
SESSION A2 - CHAIRPERSONS: Zorica Veljković, Nikola Dondur, Aleksandar Žunjić

17	Nermina Zaimović-Uzunović, Samir Lemeš, Sabahudin Jašarević	
	SMARTPHONE SOFTWARE FOR URBAN NOISE MEASUREMENT	67
18.	Srdjan Vulanovic, Bato Kamberovic, Zdravko Tesic	
	METHODOLOGY FOR IMPLEMENTATION OF ISO 9001:2015	71
19.	José Sobral	
	UNDERSTANDING HUMAN ERROR IN INDUSTRY	75
20.	José Sobral, A. Roque	
	MEASURING THE EFFICIENCY OF AN INDUSTRIAL CONDITION	
	MONITORING SERVICE	79
21.	Jana Kochova	
	ANALYSIS AND CRITICAL ASSESMENT OF MARKS AND SPENSER FAILR	UE IN
	CHINA	83
22.	Zorica A, Veljković, Vesna K. Spasojević Brkić, Ahmed Ali Essdai	
	ANALYSIS OF DIFFERENCES IN ANTHROPOMETRIC MEASUREMENTS	
	BETWEEN PASSENGER CAR DRIVERS AND CRANE OPERATORS - PART 1:	
	LIBYAN MALES DATA	88
23.	Vesna K. Spasojević Brkić, Zorica A. Veljković, Ahmed Ali Essdai	
	ANALYSIS OF DIFFERENCES IN ANTHROPOMETRIC MEASUREMENTS	
	BETWEEN PASSENGER CAR DRIVERS AND CRANE OPERATORS - PART 2:	00
~ (SERBIAN MALES DATA	92
24.	Aleksandar Trifunović, Svetlana Čičević, Aleksandar Zunjic, Magdalena Dragović	
	THE IMPORTANCE OF ERGONOMIC PRINCIPLES IN DESIGN OF THE	96
25	TRAFFIC SIGNS FOR CHILDREN	90
23.	Aleksandar Zunjic, Vladimir Sremcevic, Svetlana Čičević RESEARCH OF UNDOCUMENTED INJURIES OF PASSENGERS IN BUSES F	OD
	CITY TRANSPORT	99
26	Sonja Josipović, Nikola Dondur, Aleksandar Simonović, Ognjen Peković	"
20.	THE DISTRICT HEATING PROJECT IN BELGRADE AREA: AN APPRAISAL	IN
	THREE DIFFERENT STUDIES	102
27		102
27.	Sonja Josipović, Nikola Dondur, Slobodan Pokrajac	
	THE CONCEPT OF ENTREPRENEURSHIP AND ECONOMIC GROWTH:	100
20	EXAMPLE OF RURAL AREAS IN SERBIA Zorica A, Veliković, Damir Ćurić, Slobodan LJ. Radojević	108
20.	Zorica A, Velikovic, Damir Curic, Sloboaan LJ. Radojevic MISTAKES IN APPLICATION OF TAGUCHI'S EXPERIMENTAL DESIGNS: CA	SE
	MISTAKES IN APPLICATION OF TAGUCHT'S EXPERIMENTAL DESIGNS: CA STUDIES	SE 112
	σιυνιέσ	112

29. Milos Dobrojevic, Tamara Golubović

OPTIMIZATION OF E-COMMERCE SEARCH ENGINE WITH APPROXIMATE STRING MATCHING TECHNIQUE

SESSION B1 - CHAIRPERSONS: Katarina Dimic-Misic, Danijela Tadić, Tatjana Šibalija


30.	Patrick Gane	
	CONTACT ANGLE ON COMPLEX SURFACES: A NOVEL PRAGMATIC	100
31	APPROACH TO DETERMINING SURFACE ENERGY Ernest Barceló, Katarina Dimic-Misic, Patrick Gane	122
51.	IMPACT OF FOREST HARVESTING OF WOOD BIOMASS ON	
	SUSTAINABILITY AND REGULATORY IN EUROPEAN BIOECONOMY	
	DEVELOPMENT: LEARNINGS FROM THE FINNISH MODEL	129
32.	Katarina Dimić-Misić, Mirjana Kostić, Ana Kramar, Miodrag Kuraica,	
	Bratislav Obradović, Stevan Jovanović, Sasa Lazović, Dimitrije Stepanenko,	
	Marija Mitrović Dankulov, Thad Maloney, Patrick Gane	
	NITROGEN PLASMA SURFACE TREATMENT ON MICRO	
	NANOFIBRILLATED CELLULOSE FILMS	139
33.	Ana Ferreira, Leonilde Varela	
	AN ANALYSIS OF DEFECTS IN PRODUCTS AND PROCESSES OF A	
	FURNITURE PRODUCTION COMPANY AND POSSIBLE IMPROVEMENTS	
	IN THE FRAMEWORK OF AUTO-CONTROL AND NORMALIZATION OF	
	WORKSTATIONS: A CASE STUDY	149
34.	Tatjana Šibalija, Prasert Lakman, Srikanya Sriromruen, Ekapong Patband, Kunatee	
	Vongsirithatsanakhati, Thanachote Thummanusarn	
	PROCESS CAPABILITY IMPROVEMENT BY IMPLEMENTING SPC AND	1.5.4
25	DOE IN POWER TRANSFORMERS MANUFACTURING	154
33.	Danijela Tadic, Aleksandar Djordjevic, Aleksandar Aleksic, Snezana Nestic IMPROVING QUALITY OF RECYCLING PROCESS - SELECTION OF	
	RECYCLING CENTER LOCATIONS BY USING GENETIC ALGORITHM	159
36.	Aleksandar Aleksic, Nikola Komatina, Danijela Tadic	10)
	THE SELECTION OF EQUIPMENT FOR RECYCLING BY USING FUZZY	
	COPRAS METHOD	164
37.	Hrvoje Puškarić, Marija Zahar Đorđević, Miladin Stefanović, Aleksandar Aleksić	
	FACTOR OF RISK EXPOSURE IN PROJECT IMPLEMENTATION IN STARTU	
• •	COMPANIES REGARDING TECHNOLOGY DEVELOPMENT IN SERBIA	168
38.	Sanja Petronic, T. Sibalija, K. Colic	
	IMPORTANCE OF PARAMETERS OPTIMISATION FOR LASER MATERIAL PROCESSING	172
30	Ivana Miletic, Vladimir Brtka	1/2
59.	THE USE OF FUZZY LOGIC IN THE PROCESS OF RISK ASSESSMENT FOR	
	WORKPLACES ON MACHINES	176
40.	Andrija Petrovic, Ugljesa Bugaric, Boris Delibasic, Igor Ivetic	
	PREDICTION OF SKIING TIME BY STRUCTURED REGRESSION	
	ALGORITHM	180
41.	Milos Lomovic, Andrija Petrovic, Milan Ristanovic, Aleksandar Petrovic	
	THERMO-ECONOMIC OPTIMIZATION AND CONTROL OF SMALL-SCALE	
	WATER DESALINATION PLANT	184
42.	Ana Trisovic	
	GRAPH MINING AT THE HIGH-ENERGY PHYSICS EXPERIMENT	
	LHCB	188

SESSION B2 - CHAIRPERSONS: Mirjana Misita, Andrea Sütőová, Pedja Milosavljevic

43.	Darina Juhászová, Kristína Zgodavová	
	PREPARATION FOR SPC IN SHORT RUN AND SMALL MIXED BATCH	
	PRODUCTION: CASE OF BAKERY EQUIPMENT ORGANIZATION	193
44.	Andrea Sütőová	
	OPEN INNOVATION ADOPTION AMONG THE ORGANISATIONS IN CENTRAL EUROPE (JUNCARY SLOVAKIA AND CZECH DEPUBLIC)	
	CENTRAL EUROPE (HUNGARY, SLOVAKIA AND CZECH REPUBLIC) AND EUROPEAN UNION: A COMPARATIVE RESEARC	198
45	Mirjana Misita, Marija Milanovic, Ilija Tabašević	190
10.	EXAMPLE OF PRODUCTION PROCESSES OPTIMIZATION	204
46.	Goran Đuric, Mirjana Misita, Ankica Borota-Tišma	
	INFORMATION SYSTEM DATA-FLOW ANALYSIS	208
47.	Sasa Petrovic, Pedja Milosavljevic, Jasmina Lozanovic Sajic	
	OPTIMIZATION VIA SIUMULATION: A MAINTENANCE PROBLEM STUDY	212
48.	Snežana Pavićević, Milan Kukrika, Iilja Smiljanić, Vanja Kukrika	
	CONNECTION AND RELATIONSHIP BETWEEN GDPR AND ISO	016
10	STANDARDS FOR INFORMATION SECURITY MANAGEMENT SYSTEMS	216
49.	Miloš Vasić, Časlav Mitrović, Goran Vorotović RESPONCE TIME AS A NEW APPROACH FOR MEASURING	
	MANAGEMENT SYSTEM EFFICIENCY	220
50		220
50.	Ilija Tabasevic, Dragan D. Milanovic, Mirjana Misita	
	ASSESSMENT OF THE SCOPE OF TESTING REQUIRED TO QUALIFICATION THE BMS USING FMEA METHODS	224
51	Branislav Tomic	224
51.	QUALITY 4.0	228
52	Dušan Isailović, Igor Svetel	
52.	SIMPLE BUILDING INFORMATION MODELING BY USING INDUSTRY	
	FOUNDATION CLASSES	232
53.	Svetomir Simonović	
	PRODUCT DESIGN IN GLOBAL PRODUCTION NETWORK	235
54.	Zoran Rakićević	
	GENETIC ALGORITHM FOR SOLVING DUAL RESOURCE CONSTRAINED	
	FLEXIBLE JOB SHOP PROBLEM	239
55.	Mateusz Zajac	2.42
	TRANSPORT CHALLENGES IN THE ERA OF E-COMMERCE	243

CLOSING PLENARY SESSION - CHAIRPERSONS: Patrick Gane, Kristína Zgodavová, Ernest Barceló

56. Katarina Dimic-Misic, Ernest Barceló, Vesna Spasojević Brkić, Patrick Gane	
CHALLENGES OF IMPLEMENTING A EUROPEAN BIOECONOMY BASED	
ON FOREST RESOURCES: NEED FOR CIRCULARITY	248
57. Kristína Zgodavová, Miroslav Čička, Ľubomír Lengyel	
BEST PRACTICE OF LAUNCHING A NEW PROJECT IN INDUSTRY 4.0	254
58. Zorica Dodevska, Goran Putnik	
A YOUNG RESEARCHER'S VIEW OF AUGMENTED REALITY BASED ON	
QUANTITATIVE ANALYSIS OF ARTICLES AT GOOGLE SCHOLAR IN	
THE LAST 30 YEARS	259

CAD/CAM TOOLS IN RISK ANALYSIS DURING DESIGNING PROCESS

Dejan Đorđević¹, Bojan Perić², Miloš Vorkapić³, Dragan Ćoćkalo¹, ¹University of Novi Sad, Technical faculty "Mihajlo Pupin" Zrenjanin, Zrenjanin, Serbia ²University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia ³ University of Belgrade, ICTM - CMT, Belgrade, Serbia

Abstract. By definition, the risk represents suspense in relation to the desired outcomes. According to that, this project includes the algorithm which with the help of the tool CAD/CAM provides step analysis in the process of projecting to realization of the finished product. As well, algorithm points out the possible risks when presenting element or finished product.

Key words: designing, risk, CAD/CAM

1.INTRODUCTION

Due to lack of communication in management, there are numerous weaknesses in the process of product development because the final product wasn't what customer's initial thought was.

The reason why risky management exists is because customers are often ambiguous and they have different perspective in visioning certain things, therefore, there is a problem for a designer on how to translate customer language into measurable characteristics of products or services [1].

The risk represents suspense in relation to the desired outcomes. Risk-based designing provides designers to establish factors which could be influencing certain processes to deviate from the desired result. Risk management implies that negative factors of designing should be reduced to the lowest measure and opportunies be taken to the maximum so that there are no negative occurrences.

The goal of this business is to find a solution and to avoid risks in the earliest phases of management. Presented algorithm with application CAD/CAM tools, provides elimination of potential risks during element designing or entire product.

2. RISK IN DESIGNING

In the process of realization grand engineering projects, Miller and Lessard[2] pointed out that understanding and managing risks represents challenging tasks for designers in the early stages. As well, failure of large engineering projects could lead to serious damages that could appear due to not taking risks in consideration [3].

Nowadays, all of the attention is given to technical risk [4] that implies to: 1) impossibility of determination interpersonal relations between key processes, 2) lack of access to technical expertise, 3) lack of agreement about analysis, tools and designing techniques, 4) lack of knowledge about technology application, 5) wrong technology choice, 6) limit in existing technologyapplication.

Designing is information process of transformation in which low level informations (estimates, analysis, stimulations, graphic display) are transforming in higher level informations. Generally, life cycle of a product from an idea to realization is going through following stages: designing, production, usage (exploitation) and recycling, look at the picture 2

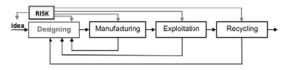


Fig 1. Stages in product life cycle

During the process of designing in an early stage of product development, the quality of a product is generated, but there is also a big number of errors. If errors do not become detected and eliminated in initial development, the progressive growth of total expenses and qualities will show up. Errors detection in later stages in the life span of the product leads to higher costs of their remediation. A large number of errors arise in the product development phase and technology design. However, in the product development phase and technology design, the errors are the most difficult to detect.

As it was already mentioned, it is considered as technical risk which should be estimated cautiously when making decisions about the project [5]. Due to the same source, considering technical risk the processes are improving with described procedures and the expenses of defective product are being reduced (Corrections, warranties and additional services).

According to ISO 31010 standard [6], possibilities for risks inclusion could be: 1) avoiding risks and taking to consideration risks as a possibility, 2) taking over risks to take opportunities, 3) elimination of a risk cause/source, 4) change of probability or consequences of risk sharing, 5) risk retention based on the information

As well, the process of managing the risk implies following activities [7]:

- <u>Risk identification</u>: certain occasions, acts or occurrence can lead to risk. In this case, the main question is who to recognize it and how to proactively participate in these scenarios. In this category various sorts of abruptions, defects, poor production of finished pieces and low product quality could be included.
- <u>Risk assessment:</u> Estimation of risks and priorities are needed to determine compatible acts of management for identifying risk factors in accordance to the situation at the design levels.

As well, risk identification and estimation could be observed and indicators in which direction should activities go. Some risks could be reduced through common action in the designing team, as with the other risks, every designer has to deal with the problem individually. Generally, every designer that resorts to apply the strategy for risk managing, should include following [8]: risk transfer, risk taking, risk elimination, risk reduction, further analysis of individual risks

3. CAD/CAM TOOLS IN RISK ANALYSIS

Nowadays, CAD programs possess in their own libraries large number of standard parts and elements, where by calling from the base and inserting them, the elements are easily placed on the drawing. Also, all these elements can be corrected in the drawing.

By development of powerful hardware solutions, a completely new approach to 3D model analysis has been developed. This approach is reflected in the formation of a detailed model and its use in virtual experiments, in a similar way as it would have been in reality with a physical model. This means that it is no longer necessary to wait for months to create a physical model in order to carry out tests, and later expensive procedures and modifications with the final goal of achieving the required characteristics [9].

The goal of 3D modeling at the design stage is to eliminate risk through: timely problem solving, the development of more creative and reliable products, reduction of post-war costs, modification of the real model or the flow of the production process itself. CAD programs allow for certain changes of a constructive nature to be made. Advantages in the model domain allow the introduction of all changes, where each change is automatically implemented on all drawings where this phenomenon occurs. Nowadays, some industry branches can't even be imagined without the use of CAD tools in 3D modeling and drawing.A typical example for something like that is the air and automotive industry that uses many CAD programs for the basic tool to model various parts. which later, with the help of special methods, examine and simulate various external physical influences.

In its foundation, the platform for testing and realization of 3D models includes programs CAD, CAM, FEA. The CAD system is used in the process of product design. It represents developed computer hardware and the corresponding software that is that is used for designing and constructing [10]. In the preparation of technology, a computer is used in the computer (Computer Aided Manufacturing) or computer assisted technology development, or computer development of a technological process.

FEA programs are used to model elastic components, which takes into account the influence of elasticity during simulation in order to predict results with greater accuracy, as well as to determine the strain of the most critical parts and define their load bearing capacity in order to finalize the mass of the components.

4. METHODOLOGY- ALGORITHM

In this project, the design process will be explained with the analysis of risk occurrence in all its stages. As an example,we will use a model for mechanical forks in the automotive industry (see picture 2). On this example, CAD application software was used in order to reduce the risks involved in designing, but also to avoid poor communication in relation to marketing - design - the manufacturing process.

The algorithm of the new product design process is given in the picture 2.

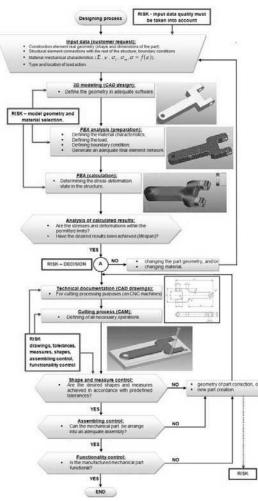


Fig 2. Designing process algorithm

The first step is defining the input data necessary for the entire process of conquering a new machine part and setting up technical and technological requirements. Here the risk can be involved if the input data not considered high-quality.

The second step is the 3D modeling of the machine part (in some of the available CAD software). Then, the preparation of the 3D model for the FEA - Finite Element Analysis and the calculation of the strength of the projected work is carried out. After the budget has been executed, the obtained results are analyzed from two aspects:

- 1. Are the stresses and deformations within the permitted limits?
- 2. Have the desired results been achieved (lifespan)?

The analysis of these results represents a step where the risk elements regarding the geometry of the set model and selection of materials are considered. If satisfactory results are not achieved, it is necessary to make certain corrections in terms of changing the material, and/or the geometry. The procedure is done iteratively, until the set requirements are met from the aspect of the strength of the structure, the planned (designed) working life of the construction. Then, the planning and part realization on the CNC machine is with done, the previous

drawingslaunching. In order to eliminate the risks, it is necessary to define in the drawing the appropriate measures tolerances, shapes and positions, which are determined in advance by the function of the projected machine part within a certain subassembly.

Finally, the realized geometric measures control, shapes and positions within the previously defined tolerances is carried out.

In order to eliminate the occurrence of risks, part assembly control, as well as control of its functionality within the sub-assembly, is of great importance. If these conditions are not satisfied, it is necessary to correct the geometry of the work, if it's possible. Otherwise, the new part is being developed.

The stream designing, i.e. the development of a new product indicates an obvious link between CAD and CAM tools. Changes on the 3D model are automatically manifested in the remaining modules (phases) within the overall design process. This greatly saves resources: people, resources and time, and therefore, money.

Based on the presented algorithm, the principle of functional characteristics and application of reference technology in the realization of the product has been respected. By its very nature, the functional characteristic refers to an existing product on the market, which has the same function and / or almost the same functional value for the user. The purpose of the functional characteristic is comparison with the new product, which will lead to improvement.

After completion of the project / product, most designers want a new opportunity to start all over again in order to do the right thing and for everyone to understand it. Unfortunately, a small number of them get an opportunity to do this. Solutions to the problem and potential solutions are obtained through

the knowledge of individuals, which indicates the loss of freedom in design.

5. CONCLUSIONS

The development of information technology enabled designers to present a new product or more combinations to obtain a sustainable production concept in a short period of time and with low costs, especially through the application of the 3D modeling program.

Product design is a risky activity in the production process. Success at the design level also determines the product price.

In the analysis of the demonstration model, it was tried to satisfy all conditions with the maximum exclusion of all predictable and unpredictable risk factors:

- the designing process should enable accurate and transparent steps in terms of providing solutions,
- the model should be neutral in the first consideration, and then the conditions of concretization,
- the elements of the model must be precisely defined,
- the proposed steps have to be accurately described and explained,
- analyzes and results obtained with other models should be carried out,
- the model should be understood by designers in practice,
- the model should be applicable.

This work shows the importance of CAD application software in the new product development. The application of software accelerates the development, analysis and decision-making of acceptable and solutions. With CAD application software it is possible to execute: static size calculations, stability and vibration calculations, multi-criteria optimization and determination of thermal changes in the design.

ACKNOWLEDGEMENT

This work is a result of the project financed by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant TR 35017 and Grant TR32008.

REFERENCES

[1]Erol, I., & Ferrell, W. G. (2003). A methodology for selection problems with multiple, conflicting objectives and both qualitative and quantitative criteria. *International Journal of Production Economics*, 86(3), 187-199.

[2] Miller, R., &Lessard, D. (2001). Understanding and managing risks in large engineering projects. *International Journal of Project Management*, *19*(8), 437-443.

[3]Williams, T. (1995). A classified bibliography of recent research relating to project risk management. *European journal of operational research*, *85*(1), 18-38.

[4] Kliem, R. L. (2000). Risk management for business process reengineering projects. *Information systems management*, *17*(4), 71-73.

[5]Michalska, J. (2006). Quality costs in the production process. *Journal of Achievements in Materials and Manufacturing Engineering*, 17(1-2), 425-428.

[6] ISO 31000: 2009 Risk management - Guidelines on principles and implementation of risk management, 2009.

[7] Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V. M., &Tuominen, M. (2004). Risk management processes in supplier networks. *International Journal of Production Economics*, *90*(1), 47-58.

[8] Polk, R., Plank, R. E., & Reid, D. A. (1996). Technical risk and new product success: an empirical test in high technology business markets. *Industrial Marketing Management*, *25*(6), 531-543.

[9] Ryan, R. (2001). Functional virtual prototyping. *Mechanical Dynamics Inc.*

[10] Hubka, V., & Eder, W. E. (2012). *Design* science: introduction to the needs, scope and organization of engineering design knowledge. Springer Science & Business Media.