

# **CO<sub>2</sub> CONVERSION ENHANCEMENT IN A PERIODICALLY OPERATED SABATIER REACTOR: NONLINEAR FREQUENCY RESPONSE ANALYSIS AND SIMULATION-BASED STUDY**

## Robert Currie<sup>1</sup>, Daliborka Nikolic<sup>2</sup>, Menka Petkovska<sup>3</sup>, David Simakov<sup>1</sup> 1 Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada;

2 Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia; 3 Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Serbia

# Introduction

### **Forced periodic operations**

- One aspect of Process Intensification
- In some cases, the process performance can be enhanced by periodic modulation of some inputs around a chosen steady-state

#### **Nonlinear Frequency Response Method**

Frequency response of a stable weakly nonlinear system is defined by a set of Frequency Response Functions (FRFs) of the first, second, third, ... order ( $G_1(\omega)$ ,  $G_{2}(\omega_{1},\omega_{2}), G_{3}(\omega_{1},\omega_{2},\omega_{3}),...)$ The FR consists of indefinite number of harmonics and a non-periodic term

#### **THIS WORK: Application to Sabatier reaction**

 $CO+3H_2 \leftrightarrow CH_4+H_2O$  $\Delta H_{298}^{o} = -206.1 \text{ kJ/mol}$  $CO_2 + H_2 \leftrightarrow CO + H_2O$  $\Delta H_{298}^{o} = -41.2 \, \text{kJ/mol}$  $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$  $\Delta H_{298}^{o} = -164.9 \, \text{kJ/mol}$ 

 $y = y_{DC} + B_I \cos(\omega t + \varphi_I) + B_{II} \cos(2\omega t + \varphi_{II}) + B_{III} \cos(3\omega t + \varphi_{III}) + \cdots$ 

- **y<sub>DC</sub> –** the non-periodic term responsible for average performance of the periodic process - defines the process improvement through periodic operation ( $\Delta \equiv y_{DC}$ )
- NFR method: y<sub>DC</sub> non-periodic term proportional to  $G_2(\omega,-\omega)$  – the asymmetrical second order (ASO) FRF
- Applicable to single and multiple input modulation
- Applicable to any shape of the periodic input



## Mathematical model:

- Model assumptions: CSTR, isothermal, diluted reaction system, constant total pressure
- Model equations (dimensionless):

$$\frac{du_i}{d\tau} = u_{if} - u_i + Da\left(\alpha_{i1}\kappa_1f_1 + \alpha_{i2}\kappa_2f_2 + \alpha_{i3}f_3\right)$$
$$i = CO_2, H_2, CH_4, CO, and H_2O$$

$$u_{i} = \frac{c_{i}}{c_{tf}} \qquad \tau = \frac{t}{L/v_{g}} \qquad Da = \frac{W_{c}k_{3}}{F_{tf}\sqrt{P}}$$

$$\kappa_{1} = \frac{k_{1}}{k_{3}} = \frac{A_{1}}{A_{3}} \exp\left(\frac{E_{a3} - E_{a1}}{R_{g}T}\right)$$

$$\kappa_{2} = \frac{P^{1.5}k_{2}}{k_{3}} = \frac{P^{1.5}A_{2}}{A_{3}} \exp\left(\frac{E_{a3} - E_{a2}}{R_{g}T}\right)$$
CO<sub>2</sub> conversion  
In periodic conditions
$$X_{av,CO_{2}} = \frac{u_{CO_{2},f}F_{tf,ss} - (u_{CO_{2}}F_{tf})^{n}}{u_{CO_{2},f}F_{tf,ss}}$$

Kinetic model (addapted from J. Xu, G. F. Froment, AIChE J. 1989, 35, 88-96.)  $f_1 = \frac{1}{\sqrt{\delta}} \frac{u_{CH_4} u_{H_2O}}{u_{H_1}^{2.5}} - \delta^{1.5} \frac{u_{H_2}^{0.5} u_{CO}}{k_{1_{eq}}}$  $f_{2} = \delta \left( \frac{u_{CO}u_{H_{2}O}}{u_{H_{2}}} - \frac{u_{CO_{2}}}{k_{2,eq}} \right)$  $f_3 = \frac{1}{\sqrt{\delta}} \frac{u_{CH_4} u_{H_2O}^2}{u_{H_2}^{3.5}} - \delta^{1.5} \frac{u_{H_2}^{0.5} u_{CO_2}}{k_{3.6}}$ 

$$k_{j,eq} = \frac{K_{j,eq}}{P^2}$$
  $j = 1,3;$   $k_{2,eq} = K_{2,eq}$ 

Model parameters from in-house Measurements (Uni. Waterloo)

## **RESULTS – CO<sub>2</sub> conversion for flow-rate modulation**









|     | Forcing amplitude |       |     |                  |                |       |                |       |              |
|-----|-------------------|-------|-----|------------------|----------------|-------|----------------|-------|--------------|
|     | 0.10              |       |     | 0.50             |                |       | 0.95           |       |              |
| ω   | $X_{CO_2}(\%)$    |       | σ   | X <sub>CO2</sub> | $X_{CO_2}(\%)$ |       | $X_{CO_2}(\%)$ |       | $\sigma(\%)$ |
|     | num               | NFR   | (%) | num              | NFR            | 0(70) | num            | NFR   | 0(70)        |
| 1   | 86.71             | 86.71 | 0   | 86.14            | 86.13          | -0.01 | 84.61          | 84.56 | -0.06        |
| 100 | 86.76             | 86.76 | 0   | 87.45            | 87.37          | -0.09 | 90.25          | 89.03 | -1.35        |





