Comparison of possible improvements of periodically operated adiabatic CSTR with inlet concentration modulation for different shapes of the forcing function

Daliborka NIKOLIĆ ¹ Matthias FELISCHAK ² Andreas SEIDEL-MORGENSTERN ^{2,3} and Menka PETKOVSKA 4

- ¹ Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Serbia
- ² Otto-von-Guericke University, Magdeburg, Germany
- ³ Max-Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- ⁴ Faculty of Technology and Metallurgy, University of Belgrade, Serbia

Introduction

Forced periodic operations

- One aspect of Process Intensification
- In some cases, the process performance can be enhanced by periodic modulation of some inputs around a chosen steady-state (result of the system nonlinearity)

Nonlinear Frequency Response Method

- Frequency response of a stable weakly nonlinear system is defined by a set of Frequency Response Functions (FRFs) of the first, second, third, ... order
- The FR consists of indefinite number of harmonics and a non-periodic term

$$y = y_{DC} + B_I \cos(\omega t + \varphi_I) + B_{II} \cos(2\omega t + \varphi_{II}) + B_{III} \cos(3\omega t + \varphi_{III}) + \cdots$$

- y_{DC} the non-periodic term responsible for average performance of the periodic process – defines the process improvement through periodic operation ($\Delta \equiv y_{DC}$)
- **NFR** method: y_{DC} non-periodic term proportional to $G_2(\omega_1 \omega)$ the asymmetrical second order (ASO) FRF

General Input Waveform

Input modulation X of a general waveform

- Any periodic function can be represented as an infinite sum of harmonic functions, i.e. as a Fourier series.
- For practical applications, approximation with only the first K harmonics can be used

DC component of the output Y

 $G_2(k\omega,-k\omega)$ ASO FRF corresponding to the k-th harmonic of the input (correlating the output Y to input X)

DC Components for Different Shapes of the Input

5	Input modulation	DC component of output Y
	Square-wave	$2\left(\frac{2A}{\pi}\right)^{2} \sum_{k=1,3,5,}^{K} \left(\frac{1}{k}\right)^{2} G_{2}(k\omega, -k\omega)$
	Triangle	$2\left(\frac{4A}{\pi^2}\right)^2 \sum_{k=1,3,5}^{K} \left(\frac{(-1)^{\frac{k-1}{2}}}{k^2}\right)^2 G_2(k\omega, -k\omega)$
	Saw-tooth	$2\left(\frac{A}{\pi}\right)^{2} \sum_{k=1,2,3,\dots}^{K} \frac{(-1)^{2k}}{k^{2}} G_{2}(k\omega, -k\omega)$

A - nominal amplitude ω - forcing frequency

au - time

Case Study — Adiabatic CSTR

Simple, irreversible, liquid homogeneous *n*-th order chemical reaction, $A \longrightarrow \nu_P P$, with a rate $||aw||_{r=k_{0}e^{-\frac{E_{A}}{RT}}c_{A}^{n}}$

Input: Inlet concentration of the reactant (C_{A_i})

Output: Outlet product concentration (C_P)

Yield of product $Y_{P,po} = Y_{P,S}(1 + C_{P,DC})$

Relative change of the product yield $\Delta Y_P = C_{P,DC}$

Asymmetrical second order FRF

$$G_2(\omega, -\omega) = \frac{(1+\alpha)^2}{2B_{ps}} \times \frac{\Lambda}{(\omega^2 + 1)(\omega^2 + B_{ps}^2)}$$

Auxiliary parameters

$$\Lambda = n(n-1)\omega^{2} + n^{2}(1 - 2\beta^{2}\gamma) - n(1 + \beta\gamma)^{2}$$

$$\alpha = k_{o}e^{-\frac{E_{A}}{RT_{S}}}c_{A,S}^{n-1}\frac{V}{F_{S}}, \beta = \frac{\Delta H_{R}k_{o}e^{-\frac{E_{A}}{RT_{S}}}c_{A,S}^{n}\frac{V}{F_{S}}, \gamma = \frac{E_{A}}{RT_{S}}$$

Stability:

$$B_{ps} = 1 + n\alpha + \beta\gamma > 0$$

Parameters for reaction of hydrolysis of acetic acid anhydride ($n=1, k_0 = 139390 \text{ 1/s}, E_A = 44.350 \text{ kJ/mol}$,

 $\Delta H_R = -55.5 \text{ kJ/mol}, \ \overline{\rho c_p} = 4.186 \text{ kJ/(K dm}^3)$

References

- [1] M. Petkovska. A. Seidel-Morgenstern, "Evaluation of periodic processes" in Periodic operation of reactors, edited by P.L. Silveston and R.R.Hudgins (editors). Bitherworth-heineman (Elsevier), 2013, pp 387-413
- [2] D. Nikolić, M. Petkovska, *Chemie Ingenieur Technik*, <u>88</u> (2016) 1715-1722
- [3] D. Nikolić, M. Felischak, A. Seidel-Morgenstern, M. Petkovska, Chemical Engineering and Technology, 39 (2016) 2126-2134

Madulation	Α	K	Y _{P,po} (%)		x /0/1	
Modulation	[%]		num	NFR	δ _Y (%]	
square- wave	25	1		67.55	-0.26	
		3	67.73	67.68	-0.07	Excellent
		5		67.72	-0.01	
	75	1		78.22	-0.04	agreement!
		3	78.25	79.44	1.52	
		5		79.81	1.99	

Conclusions

 Estimation of possible improvements for different shapes of forcing function possible using the NFR method, just based on the second order approximation.