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ABSTRACT 

 

Stability analysis of reaction systems is described by the 

application of the Stoichiometric Network Analysis to the three-variable-

autocatalator. Although simple, this model is complex enough to describe 

complex forms of nonlinear dynamics phenomena, like mixed-mode 

oscillations and chaos. Therefore, stability analysis of such model is not a 

trivial task. Using the Stoichiometric Network Analysis for this purpose 

makes the process clear and leads to the reliable result. 

The method is described briefly in few general steps and all of 

them are further clarified through the application to the chosen example. 

First, the reaction rates in steady state are decomposed to contributions of 

independent pathways, called extreme currents. Then, linearized operator 

is constructed. Finally, through the analysis of the principal minors of the 

essential part of this operator, simple stability criterion is identified. 
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1. Introduction 

 

Reaction systems are wide but specific class of dynamical systems where 

state variables are usually concentrations of some reactive species. In these 

systems the contributions of the individual reaction rates to the overall rate 

of changes are governed by the stoichiometric relations between mentioned 

species. [1] The number of individual reaction rates (reaction steps) can be 

more or less large. In biochemical reaction systems it is generally very large. 

[2] Hence, the stability analysis of such systems is also specific and require 

use of adequate tools like the Stoichiometric Network Analysis (SNA). [3] 

 In models of reaction systems, various rate laws [4] may be used, but 

mass action principle is the most common. It is based on fundamental 

principle, that the rate of reaction is proportional to the concentrations of the 

reacting substances. As a result, rates of individual steps are power 

functions of concentrations as the state variables, and overall rates are 

obtained as linear combinations of such simple monomial terms. 

Nevertheless, final expressions are nonlinear as a rule. Moreover, the 

number of independent variables (the concentrations of independent species) 

and number of related equations that describe their evolution in time, may 

be very large. 

Numerical simulations based on efficient algorithms for integration 

of systems of ordinary differential equations are often the best way to 

analyze dynamical states of the reaction systems. However, the main model 

parameters – rate constants of all individual reaction steps are generally 

unknown. Therefore, more general approach is required to evaluate possible 

dynamic states depending on unknown values of the rate constants. SNA is 

probably unique tool that may provide such general results on so complex 

objects as reaction systems are. Large number of reaction steps and reaction 

species may be limiting for application of the SNA, but several 

approximations, specific only for SNA, are available to attain some result on 

instability condition even for very large systems with dozens of reactions 

and reaction species. 

Analytical expressions for the instability condition can be easily 

calculated as a function of the rate constants, and then tested by comparing 

them with the results of the numerical simulations obtained for selected 

parameter values. [5] For this purpose, bifurcation analysis may lead to 

crucial results. [6] 
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 Simple model known as three variable autocatalator will be used to 

illustrate the method. [7] 

 

 
2. The model 

 

Our examinations are illustrated on a reaction model known as three-

variable-autocatalator. [7] This model consisting of five reaction species (R, 

X, Y, Z and P) and six reactions having rate constants ki where i = 0, 1, ... 5, 

is given in Table 1. The system may readily be reduced since P is only the 

product of the reaction which does not influence the rate of any reaction 

step. We will also assume that reactant R is in large excess so that changes 

in its concentration may be neglected and dynamical state of the system 

depends just on its initial value as a control parameter. Hence, only three 

variables remained (concentrations x, y and z of species X, Y and Z, 

respectively). 

 

Table 1. The three-variable-autocatalator reaction network model [7] 
 

0R X
k

 0 0 0v k r  (M.0) 

1X Y
k

 1 1v k x  (M.1) 

2X+2Y 3Y
k

 
2

2 2v k x y  (M.2) 

3Y Z
k

 3 3v k y  (M.3) 

4Z P
k

 4 4v k z  (M.4) 

5R+Z X+Z
k

 5 5 0v k r z  (M.5) 

 

The dynamics of the model can be represented by set of ordinary 

differential equations: 

 

0 1 2 5
d

d
   x v v v v

t
 (1) 

1 2 3
d

d
  

y
v v v

t
 (2) 

3 4
d

d
 z v v

t
 (3) 

 

and if we use rates of reaction steps from Table 1 set of differential 

equations has the form: 
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2

0 0 1 2 5 0
d

d
   x k r k x k x y k r z

t
 (4) 

2
1 2 3

d
d
  

y
k x k x y k y

t
 (5) 

3 4
dz

d
 k y k z

t
 (6) 

 

Species Z does not change the concentration in reaction (A.5) since 

it appears there both, as reactant and product.  

From equations (4)-(6), we can calculate steady-state concentrations: 

 
2

0 3 4 0 4 5 0
SS 2 2 2 2

1 3 4 5 0 2 4 0 0

( )

( ) ( )




 

k k k r k k r
x

k k k k r k k k r
 (7) 

4 0 0
SS

3 4 5 0( )




k k r
y

k k k r
 (8) 

0 0
SS

4 5 0




k r
z

k k r
 (9) 

 

 The stability analysis of three variable system can be performed by 

several methods. However, the stability analysis of a system with more than 

four variables can be done only by SNA. Nevertheless, we intend to present 

the stoichiometric network analysis with its advantages on three variable 

system for pedagogical purpose.  

 

 

3. Stoichiometric network analysis of considered model 

 

Stability analysis of complex nonlinear reaction mechanisms is very 

complicated task. For models that have large number of independent 

intermediate species, the classical tools for studying the stability conditions 

are quite ineffective. To avoid this problem it is necessary to use specialized 

methods. At present, the most powerful one is the stoichiometric network 

analysis (SNA). [3, 8] 

In SNA, the kinetic equations of any stoichiometric model presented 

by a set of differential equations (such as (4), (5) and (6)) is written in the 

matrix form: 
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 Sc v  (10) 

 

where ċ is the time derivative of the m×1 concentration vector c comprising 

the change in concentrations of m independent intermediate species, known 

as internal ones in SNA. S is the stoichiometric matrix and v the so-called 

reaction or flux vector with reaction rates as components. The 

stoichiometric matrix S is an m×n matrix where n is the number of reactions 

in the reaction network (in the model considered m = 3 and n = 6.). The Sik 

element of the stoichiometric matrix corresponds to the stoichiometric 

coefficient of reactive species i (i = 1,2, ..., m) in reaction (Rk) 

corresponding to column k and row i. The reaction vector v is 1×n vector 

whose elements describe the reaction rates. 

Using the matrix representation given in equation (10), the model 

given in Table 1 corresponds to the following system of differential 

equations: 
 

0

1

2

3

4

5

M.0M.1M.2M.3M.4M.5

1 1 1 0 0 1

0 1 1 1 0 0

0 0 0 1 1 0



 
 
 
   

    
   

   
 
  

v

v

v
c

v

v

v

  (11) 

 

Row above the matrix S in equation (11) indicates correspondence 

between matrix columns and reactions in the model, and it is not part of the 

matrix. 

Now, we want to obtain information about the interplay between the 

concentrations of independent intermediate species and the dynamics of the 

network as a whole. As a first step, we look for conditions where the 

network is in a quasi-steady-state. The rates at a steady state vss are solutions 

of the relation: 

 

0 ss S v  (12) 

 

Equation (12) represents system of homogenous equations, and we 

need to find all positive solutions. Method for finding all positive solutions 

of equation (12) depends on the size of examined model. For simpler 
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models equation (12) can be solved manually. However, if the number of 

reactions is large, solving equation (12) becomes much more complex, and 

only suitable way is to use computer programs based on algorithms 

developed for this purpose. There exist several algorithms. [9-13] 

The solutions of (12), known as extreme currents [3, 8], are reaction 

pathways in steady state. They offer important information about the 

consistency of the model, and correlations between individual reactions like 

mutual exclusion or coupling. [14] The extreme currents Ei are usually 

presented as the columns (in any order) of a new extreme current matrix E. 

In the case considered, it is: 

 

1 2 3 4E E E E

1 1 0 0 M.0

1 0 1 0 M.1

0 1 0 1 M.2

1 1 1 1 M.3

1 1 1 1 M.4

0 0 1 1 M.5

 
 
 
 
 
 
 
 
  

E  (13) 

 

As before, row above and column beside the matrix E in equation 

(13) indicate correspondence between matrix rows and reactions and 

between matrix columns and extreme currents, and they are not part of the 

matrix. 

In any specific steady state, each extreme current contributes to 

reaction rates with its own, distinct, extent. The contributions of the extreme 

currents, denoted as the current rates ji, are given as the components of the 

corresponding vector j. Elements of vector j are nonnegative numbers. The 

basic equation of the SNA gives relation between rates at a steady state vss,k 

and current rates jk: 

 

ssv Ej  (14) 

 

Using equation (14), the particular vss,k can be written in the form: 

 

,0 0 0 1 2  ssv k r j j  
(15) 

,1 1 SS 1 3ssv k x j j  
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2

,2 2 SS SS 2 4  ssv k x y j j  

,3 3 SS 1 2 3 4    ssv k y j j j j  

,4 4 SS 1 2 3 4    ssv k z j j j j  

,5 5 0 SS 3 4  ssv k r z j j  

 

The next step in our analysis is to examine stability of a steady state. 

In other words, we should like to find instability condition. The stability 

analysis of the particular steady state is usually performed on the linearized 

form of the general equation of motion of a system around the steady state. 

Namely, when the system is in a steady state little perturbation of the 

concentrations of intermediate species can be given as linear deviation from 

the steady state concentrations. [15] 

 

ssc c c   (16) 

 

We can expand time derivative of concentration vector c in Taylor 

series near a steady state css and keep leading terms only. Hence, 

 
d d( ) d

d d d

ssc c c c
c

t t t

  
   M  . (17) 

 

The leading term M is Jacobian matrix which in SNA has the form 

 
( , ) diag( ) diag( )ss ss TM S Kh v v h   (18) 

 

where diag(h) is a diagonal matrix whose elements hi are the reciprocal of 

the steady state concentrations of the species i, for i = 1, 2, 3, and K is the 

matrix of the order of reactions with its transpose K
T
. Hence, the stability is 

defined by the sign of the real part of the eigenvalues of the Jacobian matrix. 

A general derivation of Jacobian matrix M is given in references [8] and 

[15]. For the model under consideration, matrix K is: 

M.0M.1M.3M.4M.5M.6

0 1 1 0 0 0 X

0 0 2 1 0 0 Y

0 0 0 0 1 1 Z

 
  

 
  

K  (19) 
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As usual, row above and column beside the matrix K in equation 

(16) indicate correspondence between matrix rows and reaction species and 

between matrix columns and reaction steps, and they are not part of the 

matrix. 

According to equation (14), the equation (18) can be transformed to 

 
( , ) diag( ) diag( )ss  TM S E Kh j j h  (20) 

 

The matrix M written as a function of the SNA parameters ji and hi 

has particular advantages for the stability analysis since these parameters are 

non-negative and each element of M is linear function of j and h parameters, 

which is an essential feature of the SNA. The steady-state stability is 

determined by the sign of eigenvalues of M, which are the roots  of the 

characteristic polynomial: [16] 

 

0

n
n i

i

i

   



 I M  (21) 

 

where, for considered model, n = 3. If real parts of all eigenvalues are 

negative a steady state is stable. If one or more eigenvalues has positive real 

parts the steady state is unstable. The number of eigenvalues with positive 

real parts can be determined by Routh - Hurwitz criterion. According to this 

criterion the number of eigenvalues with positive real parts is equal to the 

number of the sign changes in the Routh array [16]  

 

32
1

1 2 1

R 1, , , , , n

n

  
  

   
 (22) 

 

where Δi, i = 1,…,n, is i-th Hurwitz determinant, defined as the determinant 

of the leading principal minor of the Hurwitz matrix H, where leading 

principal minor of dimension i is matrix constructed from the first i rows 

and columns of matrix H. 
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1 3 5 7 2 1

2 4 6 2 2

1 3 5 2 3

2 4 2 4

1 3 2 5

1

0

0 1

0 0

0 0 0 0

n

n

n

n

n

n

    

   

   

  

  













 
 
 
 
 

  
 
 
 
 
 

H  (23) 

 

Obviously, 0i   for i n . Steady state is stable if all Hurwitz 

determinants are positive. If there is only one sign change in the Routh array 

(22), this indicates that only one eigenvalue has positive real part. Such 

instability occurs when the largest Hurwitz determinant changes its sign 

keeping all others positive, and this point presents saddle-node bifurcation. 

From Hurwitz matrix (23) we can see that the largest Hurwitz determinant 

Δn can be written as 

 

1n n n     (24) 

 

Since the sign of the largest Hurwitz determinant is in this case 

determined by the sign of the largest coefficient of the characteristic 

polynomial
n , the saddle-node bifurcation can be identified from [16]  

 

0n   (25) 

 

The Hurwitz matrix gives us also condition for appearance of 

Andronow-Hopf bifurcation which is of great importance, because it is 

source of oscillations in the system. The Andronow-Hopf bifurcation occurs 

when: [16, 17] 

 

1 0n   (26) 

 

For considered model where n = 3, the Hurwitz matrix is  
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1 3

2

1 3

0

1 0

0

 
 


 
  

 



 

H  (27) 

 

and condition for appearance of Andronow-Hopf bifurcation given in 

equation (26) is 

 

1 3

2 1 2 3

2

0
1

 
     

 

 
  


 (28) 

 

Application of an instability condition obtained by this method 

becomes limited by the number of independent internal species and it is 

often very difficult to be determined by classical procedure, but this method 

is convenient for numerical evaluation of stability of steady state. Much 

simpler method to examine the steady-state stability is the use of the matrix 

of current rates V(j), where: 

 
( ) diag( ) TV S E Kj j  (29) 

 

The steady state is considered to be unstable if there is at least one 

negative diagonal minor of V(j). [8] Although it is an approximation, this 

criterion often gives satisfactory results. The matrix V(j) for the model 

considered is 

 

1 2 3 4 2 4 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

2 2 ( )

( ) ( ) 0

0 ( )

j j j j j j j j

j j j j j j j j

j j j j j j j j

      
 

       
 
        

V j  (30) 

 

We examined all diagonal minors and detected those with negative 

terms, since only these minors can be negative. They are negative when 

polynomial obtained from corresponding determinant is negative. The 

calculated polynomials have to be compared between one another, the core 

of instability must be recognized, and essential one ought to be selected. 

The aim is to find the polynomial with less possible order. Such obtained 

polynomials are expressed in function of ji. In the case considered the 
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selected polynomial is coming from the minor corresponding to the second 

and third rows-columns: 

 
2 2 2 2

1 3 2 4 1 2 3 42   2  +    +    < 0  j j j j j j j j  (31) 

 

It may be transformed to 

 
2 2

1 3 2 4(  + )   < (  + )j j j j  (32) 

 

Since all ji parameters are non-negative condition (32) can be 

rewritten as: 

 

1 3 2 4 +   <   + j j j j  (33) 

 

According to (15) instability condition (33) becomes 

 
2

1 ss 2 SS SS  <  k x k x y  (34) 

 

which is equivalent to 

 

1
SS

2

  >  
k

y
k

 (35) 

 

Inserting (8) into (34) we obtain 

 

4 0 0 1

3 4 5 0 2

  >  
( )

k k r k

k k k r k
 (36) 

 

which may be transformed to 

 
1/ 2

1 3 4
0 1/ 2 1/ 2

4 0 2 1 3 5

  >  
+

k k k
r

k k k k k k
 (37) 

 

Equation (37) gives the critical condition, which need to be fulfilled 

for periodic temporal evolution of intermediate species that are involved in 
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dynamics of HPA system model, However, this result is only the 

approximation based on selection of the most significant minors of the 

matrix V(j), which are responsible for the sign of the corresponding 

coefficient in the characteristic polynomial (21). In large number of tested 

models this approximation works very well, even surprisingly well. 

However, in some cases it is not enough and complete condition for 

Andronov-Hopf bifurcation (28) must be used. It may be applicable only in 

the case of small models like the one used here. For the given model it is 

given by: 

 

   

   

   

  

   

3 31 3 2 2

2 1 2 3 1 2 1 2 3 4 1 3 1 2 3 4

2

22

1 2 1 2 3 4 1 2 3 4

2

1 2 3 1 2 3 4 1 2 3 4

22

2 3 1 2 3 4 1 2 3 4

3 32

1 2 3 1 2 3 4 1 3 1 2 3 4

2

2 3 1 2 3

1
h h j j j j h h j j j j

h h j j j j j j j j

h h h j j j j j j j j

h h j j j j j j j j

h h h j j j j h h j j j j

h h j j j

 
  



 
            

 

      

      

      

       

      

   

2

4 1 2 3 4

2

1 2 3 1 2 3 4 3 4 0

j j j j j

h h h j j j j j j

  

     

 (38) 

 

Numerical simulations (Figure 1) were done for three values of the 

parameter r0 and fixed values of rate constants. 
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Figure 1. Numerical simulations of the three-variable-autocatalator 

model given in Table 1. Dimensionless rate constants: k0=40; k1=0.01; k2= 

2.439 10
-3

 ; k3 = 2; k4 = 0.5; k5 = 0.5. Reactant dimensionless concentrations: 

(a) r0 = 0.8; (b) r0 = 0.1; (c) r0 = 0.01. 

 

In Figures 1(a) and 1(c) numerical simulation leads to the stable 

steady state, while in Figure 1(b) periodic oscillations are obtained. 

Accordingly, if Δ2 given in (38) is evaluated with parameter values used in 

Figures 1(a) and 1(c), positive values are obtained and with parameter 

values used for Figure 1(b) negative value for Δ2 is obtained. Hence, two 

bifurcation points of Andronov-Hopf type may be found between these 

extreme cases. However, approximate instability condition (37) predicts 

only one bifurcation value as a function of the r0. This condition is fulfilled 

for both sets of parametar values, in Figure 1(a) and 1(b), and we can now 

say that used approximation was too large. 
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4. Conclusions 

 

The three-variable-autocatalator was submitted to the Stoichiometric 

Network Analysis. Four elementary reaction pathways – extreme currents of 

the model were identified. Linearized operator of the model near the steady 

state was constructed and matrix of extreme current rates V(j) was extracted 

from it as the essential part. From the principal minors of the matrix V(j) the 

instability condition was identified which restricts the ratios between some 

reaction rates at the steady state, and consequently between the parameter 

values. Exact instability condition was identified from the Hurwitz matrix 

and it was validated by numerical simulations. 
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