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INTRODUCTION

Photonic band-gap (PBG) structures are periodic
structures with ability to control the propagation
of clectromagnetic waves [1,2]. They are inspired
by the geometry of the crystals, specially semicon-
ductor crystals. In semiconductor, energy gaps are
explained by periodicity of atoms in the crystal. Ac-
cording to the quantum mechanics clectrons in
the crystal behave like the waves in the periodic
structure. In the same way, if we construct the pe-

riodic structurc that can control electromagnetic -

waves, we can have similar results as for electrons
in the semiconductor. The equivalence of the
semiconductor energy-gap in the case of the elec-
tromagnctic waves is the photonic band-gap (for-
bidden frequency band). Essential parameter for
the formation of the band-gap is the periodic
variation of the  characteristic  impedance
Zc=(s—:/;.|.yl/2 [3,4], common for all clectromagnetic
waves.

Periodic structure that can influence on the elec-
tromagnetic waves was given different names: pho-
“tonic crystals (PC), photonic band-gap (PBG), clcc-
tromagnetic band-gap (EBG), microwave band-gap
(MBG) or (simply) periodic structure. It can be
one- dimensional (1-D), two-dimensional (2-D) or
three- dimensional (3-D). 3-D PBGs are the closest
to the 3-D case of the semiconductor. but are
pretty complicated for both simulation and con-
struction.

One of the specific property of the PBGs are de-
fects [5,6]. A defect is defined as a disturbing of
the periodicity of the structure. In the aspect of
propagation of the electromagnetic waves, defect
can be trecated as a resonant cavity. In the trans-
mission response it forms free frequency mode in-
side the forbidden band-gap.

Periodic  structures can have two topological
forms: discrete (cermet topology) and continual
(network topology). Discrete form is more com-
mon: responsc has higher order band-gaps (har-
monics) and defects can be ecasily defined with
clear interpretation in the response. Continual pe-
riodicity is a spccific case of the discrete forms.
They were studied in the past, but now, continual

periodicity is used to obtain structures with the
specific response [7]. '

Application of the PBGs can be in the whole
clectromagnetic range: from radio frequency (RF)
to X-rays. However, the lcading are optics and mi-
crowaves and they have the most applicable re-
sults. They both have thcir specific problems ac-
cording to the nature of the medium and its inter-
action with the clectromagnetic waves. In this pa-
per photonic band-gap in the microwaves will be
discussed.

Microwave PBGs have their own specifics that is
diffcrent from optics. The main are:

O The longer wavelength (around 10° times)
means bigger absolute tolerances than in op-
tics. Relaxed tolerances are better for technol-
ogy (photolitography line is wider) but some-
times the big dimension can become a prob-
lem for integration.

QO Capacity (C) and inductivity (I) are specific
properties, not directly seen in optics. They
can very succcsﬁul}x shape characteristic im-
pedance, ZC=(b/e)1 , and make influence on
the formation of the band-gaps [3,4].

In the next sections some applications will be
bricfly discussed.

3-D AND 2-D MICROWAVE PBGs

3-D PBG is complicated for both simulation and
realization. In general case, parameters depend on
the angle of incidence and on polarization. . They
can be used as angle and polarization dependant
filters. 3-D PBG is the closest to the 3-D case of
the semiconductor but can be complicated for
both simulation and construction [8-10]).

More successful arc quasi-3-D and 2-D structurcs.
They have interesting applications like: photonic
crystal based waveguide, isolation and improving
characteristics of antennas.

Photonic crystal based waveguides

Photonic crystal based waveguide [11-15] is a
waveguide in the PBG structure. It is a line defect
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bending of the electromagnetic waves

introduced in a 3-D (in practice quai-3-D) PBG,
Fig.1. Once the clectromagnetic wave is coupled
inside the guide, the trapped wave is guided
through the opening inside the structure. Experi-
mental bending of the microwaves is presented in
[14,15].

Improving isolation by PBG

Isolation can be treated as the special case of
photonic crystal based waveguide One example is
isolation between microclectronic  circuits using
vias [16]. Next is climinating current in metal
joints using photonic crystal based waveguide on
joint (photonic crystal joint - PC]) [17].

Improving characteristics of antennas by PBG

PBG application to antennas improves directivity.
It incorporates mainly: suppression of the surface
waves, reflectors and covers, and suppression of
barmonics. Suppression of the surface waves is
one of the most important task. In fact, it is the
first big application of PBG in the microwaves. The
surface waves radiate from the roughness of the
substrate surface and from the substrate edges and
can make harm to the radiation pattern. 2-D PBG
is constructed on the antenna substrate to sup-
press surface wave propagation. Constructions can
be of different types: special metal conductor sur-
face, Fig.2 [18], drilled holes in the diclectric sub-
strate, Fig.3 [19-23] or ectched metal pattern
around antenna [24]. Option without 2-D PBG is
removing as much as possible of the dielectric sub-
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Fig.2 - Special metal conductor surface (cross section)
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Fig.3 - Drilled holes Ain the diclectric substrate

stratc and that can cause a problem with the me-
chanical strength.

Reflectors and covers of various types of PBGs
are used [9,25,26,27]. Authors in [26] sophistically
use defect mode inside the 1-D PBG structure,
Fig.4. Using both PBG substratc and PBG cover is
presented in [27].

Also, supprcssion of harmonics with PBG acts
like a filter for higher radiation frequencies. In [28]
PBG structure is ctched in the ground planc.

1-D PLANAR PBGs

Brief about technological reason

3D and 2-D PBGs are consisted of mi-
cromachined holes or vias into dielectric material.
These structures require nonplanar fabrication pro-
cesses which are not easy for integration. To over-
come this problem planar process must be incor-
porated as much as possible. The best solution is
using 1-D planar printed transmission lines like
microstrip and coplanar waveguide (CPW). Somc
configurations can, also, be treated as quasi-planar.
They use drilled holes [29,30], Fig.5, mectal vias
[31,32] or dielectric (alumina) rods [33] into mi-
crostrip substrate. However vias and rods always
make technological problems ceven if they can give
very good results [32].

Onec of the better solutions was ctching in the
ground plane of the microstrip Fig.6 [34-37]. Etch-
ing (pattering) in the ground plane are still very
common in climinating need for holes or vias. De-
spite climinated holes and vias, thesc structures
have one big problem: they must be suspended.
The etched ground plane must be far enough
from any conductor surface. It makes a problem in
packaging (appropriate space, cooling and me-
chanical strength).

OO0O000O0
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Fig.5 - Microstrip with drilled periodic holes in the
substrate
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Fig.6 - Microstrip with ctched periodic pattern in the
ground plane (circles are only an example)
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Fig.7 - Microstrip with modification of the microstrip
line (without etching in the ground plane)

Fig.8 - CPW with modification of the ground planc.
Conductor line can also be modified

The solution is a planar structure with a com-
pact back (lower) ground plane like in ordinary
microstrip Fig.7 [3,4,7,38]. CPW Fig.8 [39,40] and
other uniplanar structures [41] are also used. Com-
paring with microstrip, CPW has an advantage of
the structure only on the upper side that fits pla-
nar technology. Disadvantage is “open” lower side.
Improvement was done introducing lower ground
plane and finite width upper ground planes
(FWCB-CPW) [42].

Connected  structures

Like all PBGs in general, microwave PBGs con-
trol propagation of clectromagnetic waves by creat-
ing frequency band-gap i.c. band-stop. All other
applications are combination or modification of
the band-gap concept. Wide band-stop can act as a
low-pass filter. A scrial connection of two or three
band-stops can form low-pass [30,36,43] or band-
pass filter [35,43]. Connection can, also, be parallel
[36].

Delay and phase shifting

One of the specific of the PBGs is the slow-wave
cffect [44-46]. At the edge of the band-pass the
value of the propagation constant (B) is almost
double that of a normal line. Delay is, also, pro-

portional to the number of cells. It is uscful for
delay lines, phase shifters and shaping the signal.
Intcresting is using PBG structures for making
phasc shifting in antenna array and producing
beam-steering [46]. Delay of the each antenna of
the array can be change by varying the number of
cells of the PBG feeding line.

Effect of coupling and
leaky-wave antennas

Leaky-wave radiation and coupling are also char-
acteristics of the PBGs. For some applications they
can cause problems and must be as low as possi-
ble. In simulation, coupling cffect between peri-
odic cells demands using full-wave analysis. Useful
applications are functional coupling and leaky-
wave antennas. Coupling effect in PBGs can be
used for cfficient forward coupling between lines.
It reduces line lengths and relaxes the spacing be-
tween lines [47].

ILcaky-wave antennas arc based on the periodical
structure in or close to the diclectric waveguide
[48]. Periodicity forms grating structure with spe-
cific radiation pattern. Radiation pattern can be
shaped by controlling grating profilc. Very interest-
ing applications are: photoexcited periodicity in Si
waveguide [49] and moveable grating over diclec-
tric linc [50].

Using defects

Periodic structure can contain one or more de-
fects Fig.9. Their application is forming band-pass
and resonant filters inside forbidden band-gap
[33,41,51,52]. Many defects can make complicated
structures and are treated mainly theoretically. 1t is
interesting to mention controlling defect [8,51,52].

Integration on Si

One of the main goals for microwave PBGs is inte-
gration on semiconductors. Si-substrate is one of the
main steps. The first main problems arc losses.
Good solution needs pure Si (>2 kQem). The sec-
ond is compatibility to the planar application: both
input and output nced to be on the upper side. In
that context, CPW is better than microstrip. In fact,
it is FWCB-CPW typc of CPW that is promising [42].
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Fig.9 - An cxample of defect on the microstrip PBG
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On of the main advantage of the Si-based PBGs is
ability of voltage and optical control [S3-56]: opti-
cally created plasma cffect can change effective g, of
the substrate and so Zc.

The light can easily influence the paramecters of
the Si-substrate. In CPW, the most “active” part of
the substrate is close to the "unprotected” upper
surface between central line and upper ground
planec. However, a great part of the field is in the
air above the waveguide (effective &, is small). The
light can easily influence on the upper surface of
the substrate but the influence on the waveguide
itself is not so big. There are, also, examples of
the optically created PBG on CPW [55-56]. In mi-
crostrip, more “active” part is under the microstrip
line and light nced to come from the side.

Controlled PBG

Controlling of PBGs is, also, one of the main
goals (also called “active PBGs"). The control is
done by external influence on the Z¢ of the struc-
turc. One of the ways of the influence can be
forming the periodicity on the uniform waveguide
[54-56]. Another control can be creating or modi-
fying defects [8,51,52].

dielectric

microstrip line

Fig.10 - layout of microstrip PBG with sinusoidal varia-
tion of the characteristic impedance Z, along the mi-
crostrip line and without eciching in the ground plane

Fig.11 - One of the realized microstrip PBG band-pass
filters (white is the microstrip linc)

Fig.12 - Realized microsirip PBG low-pass filter
(white is the microstrip line)
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Fig.13. - Bandstop filter with six cells
S,, - solid lines; S,, - dotted lines
Simulated (thin lines) and measured (thick lines)

The influence on the substrate is possible in the
case of the semiconductor substrate. The influence
can be done by voltage and light [54-56].

The influence on non-semiconductor PBGs can
be done by changing capacity using external ob-
jects: devices (i.e. varactor diode [51]) or by small
plate (meclal or diclectric) above the waveguide
[52]. In both cases, changing the capacity of the
defect shifts the defect mode inside the band-gap.

Continual PBG

Continual periodicity were studied in the past
[57,58] but mainly without direct application. Now,
continual periodical structure is used to obtain
specific response. One of the examined goals is
obtaining only one band-gap (without harmonic
responsc) [7,43,59].

In [7,43] authors introduced the structures with
a sinusoidal variation of the characteristic imped-
ance Zc according to the variation of the width of
the microstrip line. The variation of Z¢ is between
Zmin and Zmax, (Zmin , Zmax), and satisfied (Zmin
Z,mx)l/2 =50 Q. They are, also, without etching in
the ground plane. Its transmission for only one
type of cells, Fig.10, gives only one (first order)
band-gap, without harmonic response, Fig.13.

The serial connection of two filters of the differ-
ent cell lengths, Fig.11, gives a band-pass filter,
Fig.14. The serial connection of three filters of the
different cell lengths, Fig.12, gives a low-pass filter,
Fig.15.
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Fig.14 - Measurement for band-pass filter around 8
GHz 8, -dotted lines; 8,,-solid lines

S-parameters
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Frequency [GHz]

Fig.15 - Mcasurement for law-pass filter
S,,-dotted linc; S,-solid linc

21



Mikrotalasna revija

Jul 2001.

CONCLUSION

In this paper microwave photonic band-gap
(PBG) structures were briefly discussed. Overview
includes brief introduction to the nature of the
PBG and discussion of the specific types and appli-
cations of the microwave PBG structurcs. Intention
was to say as much as possible in 6 pages includ-
ing uscful literature. Microwave PBG is a broad
and still a new field. A lot of things are not even
theoretically and practically clear. Application is
still in the beginning but offers wide range of use.
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