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Abstract

In order to allow for multiscale modeling of complex systems we focus on various
approaches to modeling binary adsorption. We consider multiple methods of modeling
the temporal response of general plasmonic sensors. We start from the analytical
approach. The kinetics of adsorption and desorption is modeled both as a first order
reaction and as a second order reaction. The criteria for their validity and the choice
between them in the case of two-component adsorption are established. Due to the
nonlinearities of the second order reactions and the lack of their analytical solutions,
computer aided modeling is considered next, also in multiple ways: the employment of
numerical solvers, fitting of experimental results, the stochastic simulation algorithms and
the employment of artificial neural networks (ANN). The examples we present illustrate
the advantages and disadvantages of the particular approaches. The goal is to aid the
concurrent multiscale modeling of adsorption-based devices. Machine learning in ANN
performed here is used to estimate the equilibrium values of adsorbed quantities. The
obtained results show that to train an ANN for the estimation of the equilibrium
adsorption quantities the Levenberg-Marquardt and the Bayesian regularization
algorithms are less efficient than the quasi-Newton BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm.
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1 Introduction

Adsorption-desorption processes are employed in many industrial applications [1-4], but
also in novel devices based on emerging technologies [5]. Adsorption-based devices with
optical readout, such as plasmonic sensors, enable the detection of the targeted species but
also the investigation of the kinetics of the adsorption process itself.

Early empirical approaches to the kinetics of adsorption processes had resulted in a
first order differential equation modeling the exponential transition of the number of the
adsorbed molecules from an initial value to a steady-state value [6,7], like in the first
order reactions. Starting from the stoichiometric equation valid for the binary adsorption-
desorption one gets analytical models in a form of coupled nonlinear second order Riccati
differential equations [8,9]. They can be reduced to first order differential equations if
certain conditions are met [10,11]. Novel models emerge with the advances of computing
concepts and algorithms. They include those based on trained artificial neural networks
(ANN) [12,13]. The prominent use of ANN in modeling allows for obtaining fast and
reasonably reliable results that can be used independently or incorporated in a combined
multiscale approach to modeling [14]. Trained on ab initio calculations or experimental
results, ANNs can be used for providing constants for the kinetic parameters, such as
desorption energy — otherwise determined experimentally or by density functional theory
calculations [15] — or for providing kinetic parameters themselves.

It is documented that ANNs can be used for the estimation of reaction rate constants
in chemical kinetics [16,17], for predicting adsorbed amounts of copper using ground nut
seed cake powder, sesame seed cake powder and coconut cake powders as bio adsorbents
[18] or for the estimation of time degradation of adsorbate in binary mixtures exhibiting
linear Langmuir kinetics [19]. The employment of ANN is usually a part of multiscale
analysis, like in [20], where a combination of molecular simulation and machine learning
was used to examine the role of various pore topological structures on the CO, capture
capabilities of MOFs (metal organic frameworks). In [21] intelligent optimization
algorithms were implemented for finding the optimum values for the adsorption of
methylene blue dye by carob powder used for cleaning wastewater (particle size,
temperature, solution concentration, contact time...). The use of machine learning
classification algorithms for the optimization of methylene blue adsorption on silver
nanoparticles attached to activated carbon is addressed in [22] while the computational
modeling of the related adsorption process is investigated in references therein. An ANN,
feed forward back-propagation neural network (FFBPNN), and Levenberg—Marquardt
(L-M) training algorithm were applied for predicting the adsorption capacity and
removal/uptake percentage of Pb(II) ions by rice husks as bio-adsorbents in [23]. A recent
work on modelling of adsorption of methane, nitrogen, carbon dioxide, their binary
mixtures, and their ternary mixture on activated carbons using an artificial neural network
in [24] gives a good review of published works on the use of machine learning algorithms
for modeling adsorption capacity. It also presents an example of using artificial neural
network, trained on a set of 1440 experimental data sets, for modelling of adsorption of
gases on activated carbons. Although targeting a broad application range, namely
adsorption of methane, nitrogen, carbon dioxide, their binary mixtures, and their ternary
mixture, the results in [24], as the work in before mentioned publications, still are
application-specific. The published research clearly shows that the use of machine
learning for the prediction of adsorbed amounts in various applications is feasible and that
the results reach a high accuracy. However, it also shows that the analytical models are
still at an advantage when it comes to the prediction in adsorption-based devices for an
arbitrary analyte or mixture of analytes with known parameters.



Analytical models of the temporal response of adsorption-based plasmonic sensors,
valid for linear systems with the first order kinetics, are presented in [25]. Analytical
models of the temporal response of adsorption based plasmonic sensors valid for
nonlinear systems with second order kinetics of adsorption process are also known [26],
both for monocomponent and multicomponent analyte environments [27]. The analytical
results related to the linear systems are general and can be applied for the deterministic or
stochastic analysis of performances of plasmonic sensors surrounded by a mixture of an
arbitrary number of analytes [25]. The analytical approach, i.e. the theoretical analysis
performed in [25] resulted in a probability-generating function providing one with an
insight into all of the higher moments and statistical parameters of the process.

The results related to nonlinear systems are known in analytical form for
monocomponent adsorption only. The calculations of the response of plasmonic sensors
caused by multicomponent adsorption must then rely on the use of numerical ordinary
differential equations (ODE) solvers. They may be stiff if some species have much
smaller time scales than others, and consequentially, their solution may be time
consuming or doubtful in that case. Knowing the way to simplify the problem by
linearization for instance would be beneficial for faster comprehension of the dynamic
behavior of the system. Knowing the criteria for the domain of applicability of the results
based on the use of linear model would be even more beneficial since the stochastic
behavior of such linear systems can be deduced from the deterministic response, as
described in [25].

The criteria for validity of the pseudo-first-order kinetics in biochemical kinetics of
ligand-receptor binding are investigated in [10]. The criteria for the domain of
applicability of equations governing the response of a plasmonic sensor based on the
adsorption process with the kinetics of the first order are known in analytical form
[11,26]. The mentioned criteria refer to applications where the monocomponent
adsorption is encountered. However, in practical applications there are always either true
multicomponent analyte mixtures or analytes with unwanted traces of spurious residues.
Here we focus on modeling the response of a plasmonic sensor surrounded by a binary
mixture of adsorbates.

The adsorption process in practical applications is truly multicomponent, truly
nonlinear and truly stochastic. The mandatory method of the stochastic analysis, based on
the master equation for the probabilities that the system has a given composition as a
function of time, i.e., chemical master equation (CME) [28], gives the complete insight
into the stochastic behavior of the system over time. However, it is seldom the case that
the CME related to nonlinear systems can be solved analytically. There are numerical
solutions, based on CME, proposed by Gillespie et al, developed and improved over time,
also implemented into a standalone software solution for multiple platforms (StochKit2)
[29-37]. These algorithms for simulation of stochastic reaction kinetics, called stochastic
simulation algorithms (SSA), differ from the analytical approach for developing and
forming CME. Beside including stochastic instantaneous numbers of adsorbate molecules
on the surface, they also take into account time as a stochastic variable. The residential
time of an adsorbed particle on the surface has an exponential distribution and numerical
calculations rely on the use of built-in random number generators in a specific programing
environment. We illustrate the advantages and the pitfalls of the SSA in the text.

In order to allow for multiscale modeling of more complex systems we focus here on
the features of various approaches to modeling binary adsorption. We first give some
theoretical background of plasmonic sensing of adsorbed analytes, then we consider the
criteria for the validity of equations based on the linear first order kinetics of single-



component adsorption. After that we deal with numerical solvers with the aim to
generalize the criteria to binary adsorption and address the stochastic behavior by
applying the stochastic simulation algorithms written for binary adsorption. Finally we
deal with training an ANN capable of providing us with the steady state values of the
adsorbed amount of particular analytes of a binary mixture in plasmonic sensors. We give
the obtained functions along with the corresponding subroutines as an open source
material suitable for further use by other researchers. We also expect our results to be
scalable and therefore suitable to be generalized to mixtures of an arbitrary number of
adsorbates.

2 Theoretical approach based on analytical solutions

In general, surface phenomena of adsorption and desorption take place at the interface
between two different phases: liquid/gas, solid/gas, solid/liquid [2,38]. We refer here to
adsorption of fluid particles on solid surfaces capable of supporting surface plasmon
polaritons — SPP (metals or other plasmonic materials) [39]. This situation corresponds to
various kinds of refractometric affinity sensors, from the conventional SPP sensors based
on evanescent wave propagation at the interface between a semi-infinite dielectric and a
semi-infinite metal to complex nanostructured plasmonic metamaterial-based sensors.

The benefits of optical readout with surface plasmon polaritons (SPP) detection are
multiple. The operation of plasmonic sensors does not require the tagging of analyte
particles as in fluorescence detection [40], they can operate in real time, their sensitivity is
extremely high [41], their all-optical detection is way faster than electronic, thus ensuring
monitoring of nano-second dynamics [42]. Plasmonic sensors are refractometric, i.e. they
are based on the reading of changes in refractive index caused by the presence of analytes.
The SPP waves were first observed in 1902 as an "anomaly" (the existence of unexpected
black lines) in the spectrum of light reflected from a diffraction grating located on a metal
surface [43], later explained [44,45]. This has been since exploited in many applications.
The SPP waves are surface bound, their intensity decreases exponentially with distance
from it (evanescent waves). All electromagnetic changes at the surface, that is, at the point
of establishment of SPP waves, directly affect the readable optical parameters at the
interface, which is therefore ideal for detecting and monitoring surface processes. The
surface plasmon polariton moves in the plane between the medium with a negative value
of relative dielectric permittivity, € < 0 (metal or other material with free electron plasma)
and the medium with a positive value, € > 0 (dielectric, or analyte-containing analyte) at a
frequency close to plasmonic resonance. When the analyte is adsorbed on the interface, it
modulates the SPP wave propagation conditions and thus changes the refractive index n.
This change is read from the outside by an interrogating light beam.

Figure 1. shows a schematic diagram of the operation of plasmonic sensors in three
different scales. Optical detection of the reflected beam from the surface, presented as red
lines on the left side of the picture, follows the evanescent field of an excited SPP beam
on the sensor surface (shown as a pink line and its spatial distribution being shown in the
inset at the lower left of the picture). The surface may be solid plasmonic material,
functionalized by depositing a thin layer of a ligand in order to enable selective binding of
a targeted receptor. Alternatively, it may be nanoengineered (thus forming a metasurface)
in order to tailor the reflectance spectrum as shown in the middle. In a red ellipse on the
right, the picture shows a surface with adsorbed molecules surrounded by free moving
ones.



The equations that relate kinetic constants — the rate constant for the adsorption and
the rate constant for the desorption — with the parameters on a molecular level such as the
desorption energy, molecular projection area and mass, depend on the application. The
development of the equations in [27] is based on the ideal gas theory and provides a
complete analytical solution of the rate constants. In biosensing applications the
surrounding medium is liquid and the determination of rate constants relies on
experimental or numerical methods [46,47]. The software solution for calculations of rate
constants based on the known desorption energy and molecular constants is available at
Mendeley Data, the repository with open access [48] and the datasets with desorption
energies and molecular constants based on experimental data acquired from literature is
given on Harvard and Mendeley Data repositories [49-51].
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Fig. 1 Schematic presentation of competitive adsorption of binary mixture on a metamaterial surface

The stoichiometric equation that describes the binary adsorption shown in the Fig. 1 is
kai .
Ag’[+Afk—><TAa’[, i=1,2 )]

where A4, refers to free fluid molecules, i.e. molecules in the gas or liquid phase, 4, refers
to the free adsorption centers on the plasmonic surface and A4, refers to the molecules
adsorbed on the surface. k, is the adsorption rate constant and k, is the desorption rate
constant. 7 is an index denoting the adsorbate species 1 or 2.

In general case, which assumes taking into account the depletion of the analyzed
sample due to analyte adsorption (closed reaction chamber where analyte is not repleted),
the reaction rate equation (RRE) that governs the kinetics of this system is

dN,/dt=k,;(Ny;—N,)(M — N, —N,)—k,N, ,i=1,2 2)
Ny is the total number of analyte particles (both those available in the sample for
adsorption and those already adsorbed), M is the number of adsorption centers on the
plasmonic surface, N is the instantaneous number of particles adsorbed on the surface, and
V.45 and V., are adsorption and desorption rates, respectively. Equation set (2) is a set of
nonlinear (second order) differential equations of Riccati type. It can be written as a
matrix and form the matrix Riccati differential equation (MRDE). The solutions to MRDE
in a closed form have not been found so far [52—54]. There are results on solving MRDE
by the use of neural networks [55], applicable for nonlinear singular systems.



When the sample depletion is neglected, the RRE has the form of a linear (first order)
differential equation, Lagergren equation
dNi/dt = kniNOi(M -N—-N,) _kdiNi =Vaase =Vaest » i=1,2 3)
The related refractive index change, RIC, caused by the changes in the adsorbed
amount, is estimated as a weighted sum of refractive indexes of the adsorbed particles,
where the weight coefficients w; are calculated based on the difference between the
refractive indexes of condensed analytes, 7,, and the refractive index of the environment,
n,, which is in accord with the effective medium theory — simple mixing rule [56]:

2 2
RIC=Y N;(n,;—n)/ M= wN, 4)
i=1 i=1

First we address here the criteria for the validity of approximate modeling of the

refractive index change due to monocomponent adsorption and then we consider the

possibilities for generalization and the establishment of the criteria for the validity of

approximate modeling of the refractive index change due to adsorption of binary
mixtures.

2.1 Affinity sensor's response due to monocomponent adsorption

The first criterion for the validity of approximate modeling of the refractive index change
due to monocomponent adsorption by the linear model
Ny >>M (5)
stems directly from the comparison of the Lagergren RRE (linear model) and the Riccati
RRE (nonlinear model)
dN/dt=k,(Ny—NYM - N)—k,N =V, =V, (62)
dN/dt=k,Ny(M —N)—k,N=V, ., =V, (6b)
respectively. V) and V) are the adsorption and desorption rates. If the overall
number of molecules/particles N, is sufficiently large, its decrease due to adsorption can
be neglected and the reaction rate equation reverts from a Riccati differential equation to a
Lagergren-type equation.

However, second-order reactions can be studied by the PFO (pseudo first order)
kinetics not only when the condition (5) is satisfied, but also when another criterion is
met. The second condition revealed in [11] is

ky/k, >>2(Ny+M) @)

The conditions (5) and (7) can be expressed in the form suitable for the adsorption

based gas sensing applications

PSPy Dy =kgMT IV | py =vye ™ (RD) o imoh s T 12/ at —kyMT 1V (8)
where kg is the Boltzmann constant, my is the mass of a single adsorbate molecule, V is
the reaction chamber volume, T is temperature, £, is the desorption energy of adsorbate
molecules, R is the universal gas constant, « is the sticking coefficient, ¢ is the surface
density of adsorption centers, and v is the vibration frequency of the crystal lattice.

The solutions to reaction rate equations (RRE) for monocomponent adsorption
process are known for both models (Riccati and Lagergren). The time evolution of the
number of adsorbed molecules is an exponential regression towards a steady state. When
the conditions (5) and (7) are met, the time evolutions of the number of adsorbed particles
coincide, and when they are not satisfied, the time evolutions differ in a steady state
and/or the time constant, i.e. in the transient time needed to reach the steady state.



In a steady state (equilibrium) the adsorption rate equals the desorption rate and in
spite of the ongoing adsorption and desorption on the plasmonic surface the number of the
adsorbed molecules and the percentual surface coverage remain constant. Figure 2
represents a graphical interpretation of the first condition (5) for the approximate equality
of the steady-state numbers of adsorbed particles predicted by the two models, N,; and N,,
the greater the difference Ny—M, the closer the values of the stationary states calculated in
accordance to the linear and the nonlinear RRE.
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Fig. 2 Graphical representation of the first condition. When Eq. (5) is valid, the stationary states N, and N,
calculated according to Riccati and Lagergren RRE respectively, are close to each other. V4 is the adsorption rate
in Lagergren RRE, V4 is the adsorption rate in Riccati RRE, V., is the desorption rate, the same in both RRE, M is
the number of adsorption centers on the surface, N is the overall number of adsorbate molecules.

Figures 3 and 4 show graphically the reasoning behind applying the second condition
(7). Namely, if the desorption rate is steep (Fig. 4), desorption dominates, and since it is
modeled in the same way in both models, the instantaneous differences in adsorption rates
can be neglected.
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Figures 2, 3 and 4 show clearly that if linear modeling is employed inappropriately,
the number of the adsorbed number of molecules in equilibrium is overestimated, N, is
always greater than N,.
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A graphical interpretation of the conditions (8), aimed to support the proper modeling
of gas adsorption at the plasmonic structures, is shown in Fig. 5. The condition linearly
dependent on temperature but independent on the gas species is represented by a solid
black line. At pressures above that line the model based on Lagergren kinetics is valid and
below the line it is not. The second condition additionally depends on the gas species (i.e.
on E;). This is represented by the curves above which the linear model is valid, while
below them it is not. According to [11], if any of the conditions is met, the results based
on linear and nonlinear RRE are virtually the same — it is sufficient that at least one of the
conditions is fulfilled for the linear approximations to be valid. The intuitively clear
conclusion, that the more accurate model becomes necessary at low pressures and low
temperatures, can be quantified in practical applications by using Fig. 5. It is illustrative
that in applications related to gas sensing, modeling based on the linear RRE is likely to
be the first choice.

The kinetics of adsorption in refractometric adsorption-based chemical sensing is
usually written in terms of concentration. The two conditions for determining the domain
of applicability for monocomponent adsorption can be interpreted in terms of the
reciprocal value of the equilibrium constant, i.e. k/k, ratio, and the binding capacity,
Figure 6. The binding capacity, the analyte concentration and the reciprocal equilibrium
constant are given in the convenient M units (moles per liter). Whenever the binding
capacity is comparable with the analyte concentration or greater than it and the reciprocal
equilibrium constant (the ratio k,/k,) is smaller than the double sum of the binding
capacity and analyte concentration (the area below the convex surface in Fig. 6), the
model based on Lagergren kinetics is not appropriate.

According to literature data [57] the rate constants of adsorption in optical biosensors
used for recognition of biological macromolecules have a very broad range. For instance
Canziani [57] reported the concentrations of analyte in range from 2 to 30 nM, the binding
capacity of the ligand 333M and the dynamic range for the reciprocal equilibrium
constants calculated according to the reported rate constants for the particular analyte-



ligand pairs (human interleukin IL-5, SIL-5Ralpha) was from 2.3 to 4.8 nM. Hence, in
many such reactions the nonlinear model is likely to be the first choice.
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Fig. 6 Applicability limits for the calculations of the response of adsorption based plasmonic sensor for analytes
with known rate constants.

The solutions to Eq. (6a) and Eq. (6b) are

Mk, N,
N(t)= —2a10 (1 _ o~ (ka+kaNo)t 9
«) kd+kaN0( ¢ ) 0
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ﬂ:[(N0+M+kd/ka)—\/(N0+M+kd/ka)2—4N0M}/2 (9b)
7=MN0/ﬂ

Visually, they have the same form, the exponential regression towards the steady-
state. In [57] another criterion for the validity of the pseudo first order kinetics is
proposed. It is based on observation of the response, i.e. on the fitting of experimental
results. Treated that way, the domain of validity of the linear model is even broader than
bounded by limits presented so far. But, before generalizing towards modeling the binary
adsorption, we remark here that in fitting the nonlinear response with one transient, one
time constant, one gets mathematical form resembling the form of the linear response but
the obtained numerical values will differ from the values in the linear model itself.

2.2 Affinity sensor response to binary adsorption

The solution to the linear RRE set is known for the affinity sensor response to
multicomponent adsorption in general, for an arbitrary mixture [25].

In the case of binary adsorption with the first order kinetics, (3) is a set of two coupled
equations, the response function of each component in the mixture consisting of a
constant describing the stationary response and of two vanishing transients. These
transients are weighted differently but have the same time constants:

W, (t) _ Mk, N, k,, + Mk, N,, (kdz +Z1) s Mk, Ny, (kdz +Zz)
22, Z1(Z1 _Zz) 22(21 _Zz)
N, (t) _ Mk Nk, + Mk,,Ny, (kdl + Zl) o Mk, Ny, (kdl + Zz)
21% Z1(Z1 _Zz) 22(21 _Zz)
The notation is as before — z; and z, are the roots of a polynomial obtained by
transforming two coupled first order ordinary differential equations (ODE) with two
variables into one second order ODE with one variable.

2, :(—bi\/b2—4c)/2

b=kyNoy+ka +kiaNoy +kg» 1D
¢ = kg Notkay + kyy Nogkay +kgikay
In general, due to linearity and the fact that the numbers of adsorbate molecules obey
the multinomial distribution, the deterministic solution and all higher moments may be
represented in terms od the first moment (expectation), the number of transients in the
response of any component of the mixture equals the number of components in the
mixture and all components have transients with the same time constants.
The nonlinear RRE set that governs the binary adsorption with the second order
kinetics, modeled by Eq. (2), is not solved in an analytical form. However, the solution for
stationary states is known [27]:

2zt
e

(10)

2zt

— kdlkaZNOZle
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N, +u,Ni +u, Ny, +uy =0, N, (12a)



Uy = kg gsMNG, . uy= kazkaNoi +kankyy Noo ~M - N, kg (12b)
kdlkaZ _kalde (kdlkaZ _dekal) kal
ki k (Nog +M)+k ik, Ny +ky ik
U, = MNy, — Ny, -2 at (Noy )+ katkaz Noa + karka (120)

(kdlkaZ - dekal )
The index s refers to the stationary value. It is also known that in general, the
stationary state of one component in the mixture that follows the nonlinear equation set
during adsorption represents a root of the polynomial of the degree greater by one than the
number of the components in the mixture [27]. Hence in the binary case it is the cubic
polynomial. For every found root of a polynomial, all other stationary states are calculated
in terms of that found one, so mathematically, there are multiple stationary states. In [S8]
it is proved that only one set of stationary states in binary adsorption has physical
meaning, is real and realistic but in implementing this result a correct selection of the
appropriate solution is still needed, which may require non-negligible processing time.

3 Computer aided solutions

We address here numerical solvers, fitting of the experimental results, stochastic
simulation algorithms and the response analysis assisted by trained artificial neural
networks.

3.1 Numerical solvers and fitting of the experimental results

The results obtained by numerical solvers are application-specific, valid for the set of
parameters used in calculations. However, they lack the generality that characterizes
analytical solutions. Nevertheless, they are more and more prominent in multiscale
modelling. The computing performances are constantly improving and the pool of
available software constantly increases.

There are pitfalls of automated calculations using the same set of coding routines over
a very wide range of parameters. One is the propagation of numerical errors. One way to
deal with it, independent of the used software platform, is to adapt analytical expressions
to make them less vulnerable to numerical errors. For instance, the expression for the
stationary state in (9b) is vulnerable but can be computed from the other root by the use of
Vieta's formulas [59]. Another problem is that the parameters used may change the nature
of the equations. For instance, the set of differential equations (2) may become stiff or
unstable. Additional information is then needed to facilitate the propper selection of
physically meaningful results. In this research, that information was drawn from the
conclusions on stability of binary adsorption in [58]. Any oscillatory response is excluded
from the pool of numerical results.

In general, direct solvers (for example MathWorks COMSOL's PARDISO, MUMPS)
provide solutions generated by using fixed steps (hence encountering memory problems
when scaling down the steps) while iterative solvers provide one with adaptive steps but
setting them up manually requires a lot of expertise. In order to avoid calculation stability
issues and problems with convergence it is advisable to split the independent calculations
and segregate complex routines if possible.

For the calculations used to obtain the results presented here, Mathworks MATLAB
R13 software environment was used, and the routines from the package [48], for solving
the system of nonlinear differential equations Dormand-Prince method of order 4 and



Bogacki-Shampine method of order 3 were applied. Concurrent calculations were
performed in Octave and MathWorks COMSOL environments. Fitting was performed by
using the solution in [60]. The codes used, along with the obtained results are available
from [61].

An exemplary result regarding the validity of the approximate linear modeling of
binary adsorption is shown in Fig. 7.
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Fig. 7 Number of adsorbate molecules of binary mixture over time calculated in three ways: by the use of a
numerical solver (blue wide line and green wide line), by fitting the numerical solution (squares and circles) and by
the use of an analytical expression valid for the first order kinetic reactions (dotted and dashed lines), for the
components 1 and 2, respectively.

This result is in agreement with the criteria for validity of the pseudo first order
kinetic model of monocomponent adsorption from [10]. We applied here the generalized
version of those criteria and fitted curves searching for pair of solutions that has, for each
component, one stationary value and two transient values. However, contrary to the real
linear model where transients have the same set of time constants, here transients have
two independent time constants each. The starting points for search for them are first the
time constants of the linear model. Then, when searching for the time constants in the
response of the other component in the mixture the starting points are the time constants
found for the first component. The satisfactory result may be surprisingly simple. In this
particular example, the calculated time constants of the linear model are 0.287812 s and
0.2221 s; the calculated time constants for the component 1 in the Riccati set of equations
are 0.22171 and 0.22171, i.e. they are identical; and calculated time constants for the
component 2 in the Riccati set of equations are 0.16760 and 0.167456, very close to each
other and different from the time constant of the first component.

The fact that there is an example where the true response of a separate component in
the mixture behaves as if all transients but one can be neglected, although due to
nonlinearities supposedly it has an infinite number of transients is very important. It opens
possibilities for new speculations on the kinetics of the process (such as an explanation of
the mixture behavior where one part reaches the equilibrium faster than the other). It also
paves the way for further investigations towards the appropriate simplifications of
adsorption modeling that is a part of more complex systems.



3.2 Stochastic simulation of binary adsorption in plasmonic sensors

The adsorption process is stochastic in nature. The instances of the approach of
molecules to the surface, their residential time on the surface and the departure time from
the surface are all random. Hence the instantaneous number of adsorbed molecules on the
surface is also random. A true stochastic approach to numerical modeling of chemical
kinetics, proposed by Gillespie [30,36] is used in many applications. This algorithm is
computationally demanding, and the real challenge is an efficient implementation of the
SSA. Many adaptations on the original SSA have been developed so far, one of them is
the accelerated exact stochastic simulation (AESS) [62].

Figure 8 is obtained by the standard, unaccelerated procedure, code and generated
data are available from [61].
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Fig. 8 a)The refractive index change and b) the number of adsorbed molecules of two components in binary mixture
over time calculated by the use of the stochastic simulation algorithm (symbols) and by numerically solving RRE
(lines)



Parameters used for calculations are as follows: the vector of adsorption rate constants
is [1.33:107'""; 1.33-107'%]; the vector of desorption rate constants is kd=[0.08; 0.08]; the
vector of the number of molecules of components present in the system is No=[3-10;
3-10'"); and the number of adsorption sites on the surface is M=3-10".

The example is chosen to illustrate how computationally expensive this algorithm is.
The data shown in picture (circles and squares) are selectivelly taken from the original set
of generated data which occupies 10 Gb space in over 500 csv files each having over 1500
lines [61]. The steps for reproducing the stochastic response are consecutive, the
propensity functions for each transition are calculated using the instantaneous numbers of
adsorbed molecules on the surface. All reactions are performed for an interval of length t
before updating the propensity functions needed for the calcuation of the next time step.
One way to overcome this disadvantage is t-leaping method, the approximate method
implemented by updating the adsorption rates less often. This sometimes allows for more
efficient simulation and thus the consideration of larger systems but can diverge from the
solution obtained by numerical solvers, as shown in the inset in Fig. 8b. Results can be
obtained faster by trained artificial neural networks (ANN).

3.3 ANN-based tool for the estimation of the steady-state response

It is noted that ANNs perform better than other methods, especially in highly nonlinear
cases. Also, this technique can build an efficient model using a small set of data, but its
accuracy improves with larger data sets. Generating models by a neural network requires
a large number of iterative calculations and depending on computer resources the
computation time can be long.

Here we focus on the determination of the equilibrium values for binary adsorption
based on machine learning algorithms. The result is MATLAB function, obtained by
training a neural network on numerical experiments. For input formed of parameters of
the reaction rate equations, the function calculates the equilibrium values of the adsorbed
amount of the components in the case of a binary mixture. For training of the artificial
neural network we used the Neural Net Fitting application provided within the framework
of MathWorks MATLAB software.

Initial steps: generating database for training the network
Our database emerged as a result of over 1000 numerical experiments performed in
Octave, release 4.4.1 and 500 numerical experiments performed in MATLAB, release
R2015a.

The results of numerical experiments are stored in Microsoft Excel as csv files and
used as inputs for training the ANN. After generating a database of numerical
experiments, we apply Neural Net Fitting and analyze fitting results.

Training the ANN
The Neural Net Fitting application provided within the framework of MathWorks
MATLARB is based on multi-layer perception (MLP).

The Neural Network used three layers — the input layer, the hidden layer and the
output layer, where the input layer consists of different number of inputs
variables/parameters. The Back Propagation Algorithm (BPA) is used as stochastic
approximation to nonlinear regression. The structure of the neural networks structures
designed and used here is 7-xx-2, with 7 corresponding to the number of input layer



neurons, xx to the number of hidden layer neurons and 2 to the number of output layer
neurons. The change in number of hidden layer neurons directly affects the results.
Among several networks whose number of hidden layer neurons belongs to the set of
values (7 — 25) one is chosen as optimal. The block diagram of the chosen ANN with the
best performance is given in Fig. 9. The MLP architecture consists of an input layer, 20
hidden layers and one output layer. The hidden layer uses a hyperbolic tangent sigmoid
transfer function.

The input layer consists of 7 input nodes, parameters of the RRE, kal ka2 kdl kd2
Nol No2 and M matrix or vector data. The output layer has two nodes and they
correspond to the steady-state values of the particular analytes in a binary mixture. The
applied training algorithm is based on the Bayesian regularization. The data for network is
divided into three categories: training, validation and testing. It was set so that 70% of the
total data are used for the ANN training process, 15 % of the data are used for validation
and 15 % of data for the testing process.

Hidden OQutput

Input Output
7 2
20 2

Fig. 9 The details of the block diagram of the ANN used in this study. x1=[kal ka2 kd1 kd2 Nol No2 M], output
should deliver the steady-state values of the particular analytes in a binary mixture

The target is calculated in accord with the exact solution for the response of the
steady-state in the process of binary adsorption. The output corresponds to the values
obtained by the trained ANN. The neural network developed by the use of 275 sets of data
had a high accuracy for the output prediction. R values were 0.97914 and 0.819695 for
training and testing respectively and the corresponding MSE values were 4.16992107
and 5.18747'10°".

After aditional training MSE value droped to 1.12822-107 and R became 0.946554.
Figure 10 shows the results that correspond to training, testing and overall results. Figure
11 shows a comparison between the output calculation using a linear fit and the ANN
values of output for particular components in the binary mixture. The results of the ANN
prediction output show good agreement with the values from numerical experiments.
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Fig. 10 The results that correspond to a) training, b) testing and c) overall results.
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Fig. 11 Comparison of exact values and values estimated by the use of artificial neural network for a) the first
component in the binary mixture and for the b) the other component in the binary mixture

Figure 12 shows testing of the obtained function on a new set of data. The results are
moderate, compared to good results from [24], where training was performed not by using
the Bayesian regularization algorithm but by using the quasi-Newton BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm instead. Further exploitation of the created function,
its adaptation for the use of other algorithms and creating new functions with the same
ANN and new data sets are enabled by the use of codes given in open source Mendeley
Database [63].



New Data, species No 1 New data, species No2

w
w

~

o
N
o

~
)

o
o

o

o
=
¥
ot
\
\
o

ANN calculated coverage
R
o
o
o
© \
ANN calculated coverage
\
\

0.5

o
o

n

0 02 04 06 08 1 ) 0.2 04 06 08 1
a) True coverage b) True coverage

Fig. 12 Comparison of the exact values and the values estimated by the use of artificial neural network for a) the
first component in the binary mixture and for the b) the other component in the binary mixture

4 Discussion and conclusion

The paper addresses binary adsorption-desorption process modeled with coupled first
order differential equations or with coupled second order differential equations that can
be reverted to the first order differential equations if certain conditions are met. The paper
gives a review of the criteria developed for modeling the refractive index change in
plasmonic sensors by the monocomponent linear adsorption model.

The criteria for the choice between these two models for the case of single-component
adsorption are given in graphical form and also used for generalization, addressing the
criteria for the validity of usage of these two models for the case of binary adsorption.

The paper presents the advantages and pitfalls of the use of various numerical
techniques for numerical modeling of the kinetics of binary adsorption process such as
using numerical solvers, fitting the experimental results, the use of stochastic simulation
algorithms and machine learning in artificial neural networks (ANN). The ANN that
calculates adsorption amounts in equilibrium trained by using the Levenberg-Marquardt
and the Bayesian regularization algorithms proved to be less efficient than the one trained
by the use of the quasi-Newton BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm.

Besides their application in plasmonic chemical sensing, the presented results can be
useful for modeling of the adsorption induced noise in general adsorption-based devices
and for modeling the kinetics of two-component ligand-receptor binding, optical reading
of interactions of biological molecules, for modeling the time response of adsorption
based devices with optical readout in various applications such as gas detection,
monitoring of interactions of biomolecules, etc.

All data and codes needed for the intermediate and final results in this paper are
available on digital repositoria with open access (Mendeley Data and Harvard Dataverse).
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