CrystEngComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. D. Zaric, J. Dragelj, G. Janjic and D. Veljkovic, CrystEngComm, 2013, DOI: 10.1039/C3CE40759D.

CrystEngComm

This is an Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DO^{\oplus}), which is identical for all formats of publication.

More information about Accepted Manuscripts can be found in the

Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard Terms \& Conditions and the ethical guidelines that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these Accepted Manuscript manuscripts or any consequences arising from the use of any information contained in them.

Crystallographic and ab initio Study of Pyridine CH/O Interactions. Linearity of the interactions and influence of pyridine classical hydrogen bonds

Jovan Lj. Dragelj, ${ }^{a}$ Goran V. Janjić, ${ }^{b}$ Dušan Ž. Veljković, ${ }^{a}$ and Snežana D. Zarić ${ }^{\text {a,c }}$
${ }_{5}$ Received (in $\left.X X X, X X X\right)$ XthXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

The CH / O interactions of pyridine with water molecule were studied by analysing data in the Cambridge Structural Database (CSD) and by ab initio calculations. The analysis of the CH / O interactions in the 10 crystal structures from the CSD indicate that pyridine C-H donors do not show preference for linear contacts. The results of the $a b$ initio calculations are in accord with the CSD data and show that stabilization energy is larger for bifurcated than for linear interactions. The calculated interaction energies at MP2/cc-pVQZ level for linear CH / O interactions between water and pyridine ortho, meta, and para CH group are $-1.24,-1.94$ and $-1.97 \mathrm{kcal} / \mathrm{mol}$ respectively. The calculated energies for bifurcated ${ }_{15}$ ortho/meta and meta/para interactions are -1.96 and $-2.16 \mathrm{kcal} / \mathrm{mol}$. The data in crystal structures from the CSD and $a b$ initio calculation show strong influence of simultaneous classical hydrogen bonds of pyridine on CH / O interactions. The results show that simultaneous hydrogen bond strengthens CH / O interaction for about 20%. The calculated interaction energies for linear CH / O interactions between water and pyridine, with simultaneous hydrogen bond, for ortho, meta, and para $\mathrm{C}-\mathrm{H}$ group are $-1.64,-2.34$, - ${ }_{20} 2.33 \mathrm{kcal} / \mathrm{mol}$ respectively, while for ortho/meta and meta/para bifurcated interactions are -2.44 and -2.58 $\mathrm{kcal} / \mathrm{mol}$. The energies of meta/para bifurcated interactions calculated at $\operatorname{CCSD}(\mathrm{T})($ limit $)$ level for pyridine without and with hydrogen bond are -2.30 and $-2.69 \mathrm{kcal} / \mathrm{mol}$ respectively. The result that nonlinear interactions are energetically favoured can be very important for recognizing CH / O interaction of heteroaromatic rings in crystal structures and biomolecules.

${ }_{25}$ Introduction

The CH/O interactions are very important in many molecular systems, like biomolecules, crystals and host-guest systems. The CH / O interactions play very important role in stabilizing structures of proteins, $20-25 \%$ of the total number of hydrogen ${ }_{30}$ bonds in proteins are CH/O interactions. ${ }^{1-6}$ These interactions are of particular importance in the interactions of proteins with ligands and for structure of β-sheets ${ }^{1,3,7}$ The CH / O interactions are very important in the crystal engineering ${ }^{8}$ and it was shown that they play important role in the recognition of host-guest 35 systems. ${ }^{9}$ In numerous studies CH / O interactions were examined by different spectroscopic methods, ${ }^{10-13}$ theoretical calculations ${ }^{2,4,13-17}$ and using data in the Cambridge Structural Database (CSD) ${ }^{20,21}$ and in the Protein Data Bank (PDB). ${ }^{3,5,6,22}$

The CH / O interaction energies can vary from very weak, -0.3 ${ }_{40} \mathrm{kcal} / \mathrm{mol}$, to very strong, over $-4 \mathrm{kcal} / \mathrm{mol} .{ }^{1}$ Recent studies revealed strong CH / O interaction between fucose and water ($2.55 \mathrm{kcal} / \mathrm{mol})^{23}$ and very strong interaction in caffeinetheophylline complexes $(-4.64 \mathrm{kcal} / \mathrm{mol}){ }^{24}$ Interaction energy of CH / O interactions of aromatic $\mathrm{C}-\mathrm{H}$ donors depends on ${ }_{45}$ substituents on aromatic ring and on acceptor. ${ }^{16,25,26}$

Hydrogen bonds with linear or close to linear geometries are energetically more stable than bent ones. Based on directionality it was shown that the CH / O interactions, although can be weak, are hydrogen bonds and not the van der Waals interaction. ${ }^{21}$
${ }_{50}$ Namely, the main structural difference between the hydrogen bonds and the van der Waals interactions is preference of hydrogen bonds for linearity. ${ }^{21}$ In our recent work, by analyzing crystal structures from the CSD we showed that the CH / O interactions of the C_{6}-aromatic molecules do not show preference ${ }_{55}$ for the linear contacts. ${ }^{27}$ This is caused by the possibility for the simultaneous CH / O interactions with two adjacent $\mathrm{C}-\mathrm{H}$ groups in C_{6} aromatic ring. Bifurcated interactions were observed in substantial number of structures. Moreover, in the structures with the substituent in the o-position there is probability of bifurcated ${ }_{60}$ interactions with the substituent. The results of $a b$ initio calculations at MP2/cc-pVTZ level showed that stabilization energy is larger for bifurcated interaction than for linear. The energies of linear interactions of benzene with water, methanol, and acetone are $-1.28,-1.47$, and $-1.45 \mathrm{kcal} / \mathrm{mol}$, while of ${ }_{65}$ bifurcated are $-1.38,-1.63$, and $-1.70 \mathrm{kcal} / \mathrm{mol}$ respectively.

The study of noncovalent interactions of six-membered
nitrogenated aromatic rings is of particular importance since they are commonly found in proteins, nucleotides and many other compounds. ${ }^{28}$ Pyridine CH/O interactions were studied on few systems. ${ }^{29,30}$ The calculated interaction energy between pyridine para $\mathrm{C}-\mathrm{H}$ group and $\mathrm{Me}_{2} \mathrm{O}$ was $-1.3 \mathrm{kcal} / \mathrm{mol},{ }^{29}$ while the calculated energy for charge assisted simultaneous interaction between $(\mathrm{MeO})_{2} \mathrm{PO}_{2}^{-}$and meta and para $\mathrm{C}-\mathrm{H}$ groups of pyridine was $-7.2 \mathrm{kcal} / \mathrm{mol}^{29}$

Nitrogen in pyridine molecule is a good acceptor of hydrogen 10 bonds. Numerous studies have been performed to understand the impact of hydrogen bonding on properties of heteroaromatic molecules. ${ }^{28,31}$ Our recent results show that hydrogen bonds of pyridine nitrogen remarkably influence pyridine stacking interactions. ${ }^{32}$ The calculated energies of the stacking interactions 15 are substantially stronger for pyridines with hydrogen bonds; the energy of the stacking interaction between pyridine/water complexes is $-6.86 \mathrm{kcal} / \mathrm{mol}$, while the energy of pyridinepyridine interaction is $-4.08 \mathrm{kcal} / \mathrm{mol}$. Interestingly it was shown that in the energy of the most stable stacking pyridine/water 20 complex, the contribution of the local parallel-alignment water/pyridine interactions $(-2.98 \mathrm{kcal} / \mathrm{mol})$ is somewhat larger than the contribution of stacking interaction between two pyridine molecules $(-2.67 \mathrm{kcal} / \mathrm{mol}) .{ }^{33}$

Here we present the systematic study of CH / O interactions 25 between pyridine and water molecule. The pyridine/water CH / O interactions were studied by analyzing the data in the CSD and by $a b$ initio calculations on model systems. Influence of simultaneous pyridine hydrogen bonding on CH / O interactions was also studied. To the best of our knowledge this is the first 30 study of CH / O interactions of heteroaromatic ring indicating the importance of nonlinear interactions.

Methodology

CSD search

It was shown that analysing the data in the crystal structures from 35 the Cambridge Structural Database gives important information about noncovalent interactions. ${ }^{33,34,35}$ The crystallographic analysis is based on the crystal structures archived in the CSD (November 2011 release, version 5.33^{36}). To study CH / O interactions between pyridine and water molecule we searched
40 for crystal structures containing non-coordinated, non-substituted pyridine and water molecules. We found small number of structures with non-substituted pyridines. Therefore, we based the study of CH / O interactions on monosubstituted non-coordinated pyridine molecules. We had three sets of structures with pyridine ${ }_{45}$ molecule substituted in ortho, meta or para position.

The geometric parameters used for search the CSD and description of CH / O interactions are shown in Fig. 1 and 2. The geometric criteria for CH / O interactions were the same as in study of CH / O interactions with benzene molecule. ${ }^{27}$ A contact was considered a CH / O interaction if the distance between a $\mathrm{C}-\mathrm{H}$ group of pyridine molecule and a water oxygen atom (d) was less than $2.9 \AA$ and angle $\alpha \geq 110^{\circ}$ (Fig.1). To avoid the parallel alignment interactions of the $\mathrm{O}-\mathrm{H}$ group ${ }^{33}$ and short $\mathrm{H}^{\cdots} \mathrm{H}$ contacts, additional criterion was used; d distance was shorter 55 than distances between interacting hydrogen and any hydrogen atom of water.

The influence of simultaneous classical hydrogen bonds of pyridine nitrogen on pyridine/water CH / O interactions was also studied. We searched for pyridine/water CHLD, interyditiv Articte Online ${ }_{60}$ pyridine nitrogen has a classical hydrogen bond. The contacts between pyridine molecules and $\mathrm{X}-\mathrm{H}$ species (X is $\mathrm{O}, \mathrm{N}, \mathrm{F}$ or S), where $\mathrm{X} \cdots \mathrm{N}$ distance was shorter than $4.0 \AA$ and $\mathrm{X}-\mathrm{H} \cdots \mathrm{N}$ angle is larger than $110^{\circ},{ }^{37}$ were considered as hydrogen bonds.

65
Fig. 1 The geometric parameters used for search the CSD and analysis of CH / O interactions between water molecule and substituted pyridine molecule: the distance between pyridine C-H group and water oxygen atom is d . Angle α is the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ angle. The distance between the centre 70 of the aromatic ring (Ω) and oxygen atom projection to the plane of that ring (Op) represents the horizontal displacement (offset) r_{o}. The angle in the plane of the aromatic ring formed by N atom, the centre of the aromatic ring (Ω) and water oxygen projection to the plane of the ring (Op) is angle φ.

(a)

(b)

(c)

Fig. 2 The distribution of N (region of nitrogen atom), S (region of substituent), and CH (the rest of the space) regions, defined by φ parameter, in (a) ortho, (b) meta and (c) para substituted pyridine molecules.

80
The CSD search program ConQuest 1.14^{38} was used to retrieve structures satisfying the following criteria: (a) the
crystallographic R factor $<10 \%$; (b) the error-free coordinates according to the criteria used in the CSD; (c) the H -atom positions were normalized using the CSD default X-H bond lengths; (d) no polymer structures.
5 The preference for linear geometry can be observed by the distributions of angle α (Fig. 1). To obtain more reliable data, cone correction should be used. ${ }^{21 b}$ In crystal structures, the distribution of bond angle (α) suggests that hydrogen bonds in crystals are non-linear for purely geometrical reasons. Namely,
${ }_{10}$ the number of hydrogen bonds increases with bond angle α and distribution is proportional to $\sin \alpha$, because there is a greater probability of finding such interactions on the rims of cones of increasing angle α. To obtain the more relevant frequencies per angle α, histograms of N (where N is the number of interactions ${ }_{15}$ in the range α and $\alpha+\Delta \alpha$) must be replaced by $N / \sin \alpha .{ }^{21 b}$ This is called cone correction.
The space around pyridine ring can be divided in three regions (Fig. 2): N region (region of nitrogen atom), S region (region of substituent), and CH region (the rest of the space). Regions are ${ }_{20}$ defined by angle φ : N region has angle φ values from $0-30^{\circ}$ and $330-360^{\circ}$ (in case of para substituted pyridines only in range $0-$ 30° as it is symmetric), S region is the region around substituent, while CH region can be in a range $30-330^{\circ}$ (in case of para substituted pyridines only in range $30-180^{\circ}$ as it is symmetric),
${ }_{5}$ depending on the position of substituent. We did not search for CH / O interactions in the N and S regions. Namely, interactions in N region are governed by strong tendency of nitrogen atom for hydrogen bonds, while interactions in S region are strongly influenced by the nature of the substituent.

${ }_{30} \mathbf{A b}$ initio calculations

$A b$ initio calculations were performed on pyridine/water complexes with water in perpendicular orientation, since preliminary calculations on CH / O interactions in pyridine/water complexes and our previous results benzene/water ${ }^{27}$ showed that
${ }_{35}$ interactions with perpendicular orientations are more stable. The geometries of isolated molecules, the pyridine and the water molecule, were optimized by gradient optimization using the ccpVTZ basis set and the Møller-Plesset second-order perturbation method (MP2). ${ }^{39}$ The optimized geometries were used for the
${ }_{40}$ calculation of the interaction energies. The interaction energies were calculated at MP2/cc-pVQZ level, as it is in good agreement with $\operatorname{CCSD}(\mathrm{T})$ limit interaction energies, $\Delta \mathrm{E}_{\operatorname{CCSD}(\mathrm{T}) \text { (limit) }}$. To estimate the influence of diffuse functions in the basis set, we performed additional single point calculations with cc-pVTZ
${ }_{45}$ basis set and including diffuse functions (aug-cc-pVTZ basis set) (Supplementary Information). The results show that diffuse functions influence calculated energies less than $0.1 \mathrm{kcal} / \mathrm{mol}$.

Within each pyridine/water complex geometries of the monomers were kept rigid while the distance d (Fig. 1) was
${ }_{50}$ systematically varied. The interaction energies were corrected for the basis set superposition error (BSSE) using the standard BoysBernardi counterpoise procedure. ${ }^{40}$ The Helgaker et al. method of extrapolation ${ }^{41}$ was used to estimate the $\operatorname{CCSD}(\mathrm{T})$ interaction energies at the basis set limit, $\Delta \mathrm{E}_{\mathrm{CCSD}(\mathrm{T})(\text { limit), }}$, of the most stable
${ }_{55} \mathrm{CH} / \mathrm{O}$ bifurcated interaction. All $a b$ initio calculations were performed using Gausian 03^{42} series of programs.

The interaction energy between water and pyridine molecules
$\left(\Delta \mathrm{E}_{\mathrm{W} / \mathrm{P}_{\mathrm{y}} \mathrm{r}}\right)$ was determined as difference between the energy of water/pyridine complex and the sum of monomer energies. The
 (BSSE) using the full counterpoise procedure. The interaction energy, corrected for BSSE error, was calculated using the expression (1):
where the symbol in parentheses denotes the chemical system considered, the symbols W and Pyr in superscripts and subscripts of energy denote water and pyridine molecules respectively, while molecules with * (W* and Pyr*) denote the molecules with ${ }_{70}$ ghost orbitals

The energy of CH / O interaction between water and pyridine molecules, where pyridine forms hydrogen bond $\left(\mathrm{PyrW}_{\mathrm{H} \text {-bond }}\right)$, was determined for binary systems, as difference between energy of the complex $\left(\mathrm{W} / \mathrm{PyrW}_{\mathrm{H} \text {-bond }}\right)$ and the sum of energy for water ${ }_{75}$ molecule, included in CH / O interaction (E_{W}), and energy of pyridine with hydrogen bonded water ($\mathrm{E}_{\text {PyrWH-bond }}$). The interaction energy was corrected for basis-set superposition error (BSSE) using the full counterpoise procedure. The interaction energy, corrected for BSSE error, was calculated using the ${ }_{80}$ expression (2):

The influence of hydrogen bond on the energy of water/pyridine interaction is calculated by $\Delta \Delta \mathrm{E}$ (expression (3)):
${ }^{\text {ss }} \quad \Delta \Delta \mathrm{E}=\Delta \mathrm{E}_{\text {wipy }}$ n-bead $-\Delta \mathrm{E}_{\text {wipy }}$
The geometries of pyridine/water structures with bifurcated interactions were optimized using MP2/cc-pVTZ level of theory. In the geometry with hydrogen bond optimization was done keeping coordinates of hydrogen bonded water frozen.

${ }_{90}$ Results and discussion

By searching the Cambridge Structural Database (CSD) using criteria described in the Methodology section, $9 \mathrm{CH} / \mathrm{O}$ interactions of nonsubstituted pyridine and water were found. Because of relatively small number of CH / O interactions with ${ }_{95}$ nonsubstituted pyridines statistical analysis of the geometries was not very reliable and the analysis was presented in Supplementary Information. The search of the CH/O interactions of water with monosubstituted pyridines gave large number of contacts and enabled the analysis.
100 By searching the CSD $717 \mathrm{CH} / \mathrm{O}$ interactions between monosubstituted pyridine and water molecule were found. In some of the structures, simultaneously with CH / O interaction, pyridine molecule forms classical hydrogen bond. It was shown that hydrogen bond can influence significantly stacking os interactions of pyridines. ${ }^{32}$ Our preliminary results show that hydrogen bonds can also influence CH / O interactions of pyridine. Therefore, we separately analyzed the CH / O interactions of pyridines with and without hydrogen bonds. In the crystal
structures we found $561 \mathrm{CH} / \mathrm{O}$ interactions of pyridines with hydrogen bonds and 156 interactions of pyridines without hydrogen bonds. The number of the CH / O interactions of pyridines without and with hydrogen bonds for three positions of 5 substituents (ortho, meta, and para) is given in Table 1.

Table 1. Number CH/O interactions of monosubstituted pyridines with water molecule in crystal structures from the CSD.
$\begin{array}{cccc}\hline \text { Position } \\
\text { of } \\
\text { substituent }\end{array} \quad$ Total \(\left.\quad $$
\begin{array}{c}\text { Pyridines } \\
\text { with } \\
\text { hydrogen } \\
\text { bonds }\end{array}
$$ \quad \begin{array}{c}Pyridines

without

hydrogen

bonds\end{array}\right]\)| Ortho | 271 | 180 | 91 |
| :---: | :---: | :---: | :---: |
| Meta | 113 | 95 | 18 |
| Para | 333 | 266 | 47 |
| Σ | 717 | 561 | 156 |

The distribution of distance d for CH / O interactions of pyridines 10 with and without hydrogen bonds is given in Fig. 3. The peak of the distribution of distance d for pyridines with hydrogen bonds is in range 2.7-2.8 \AA, while for pyridines without hydrogen bonds the peak is in range 2.8-2.9 \AA (Fig.3).

${ }_{15}$ Fig. 3 The distribution of distances d (Fig. 1) of intermolecular pyridine/water CH / O interactions in crystal structures for pyridines with hydrogen bonds and (b) without hydrogen bonds.

The noncorrected and corrected distributions of angle α for pyridine/water CH/O interactions are shown in Fig. 4. The ${ }_{20}$ noncorrected distributions of angle α for both groups, pyridines with and without hydrogen bonds, do not show clear preference for any value and show very small number of linear interactions with angle α close to 180° (Fig. 4). These distributions are similar to the distribution obtained for CH / O interactions with aryl ${ }_{25}$ groups 27 and quite different than the distribution for strong hydrogen bonds of alcohols. ${ }^{43}$ Namely, analysis of hydrogen bonds of alcohols based on CSD data show clear preference for linear geometries with small number of contacts with the angle α
below 150°. ${ }^{43}$
${ }_{30}$ The correct anglular preference for the hydrogen bonds can be considered after cone correction, that is verol: implouian Afticle 0 nline weak hydrogen bonds. ${ }^{21}$ The correction is described in Methodology section. The diagrams for the CH/O interactions with the cone-correction are shown in Fig. 4 b (for pyridnes with ${ }_{35}$ simultaneous hydrogen bonds) and Fig. 4d (for pyridines without hydrogen bonds). The corrected diagrams indicate that CH / O interactions have slight preference for the linear arrangements, similar to CH / O interaction of aryl group and water molecule. ${ }^{27}$

Although both coorrected diagrams show similar preference ${ }_{40}$ for linearity, there is a slight difference. The CH / O interactions of pyridines with hydrogen bonds, have somewhat larger tendency towards linear orientations.

The distributions of angle φ (Fig. 2) for CH/O interactions of pyridines with and without hydrogen bonds are shown in Fig. 5-7.
${ }_{45}$ The diagrams were shown separately for ortho, meta or para substituted pyridines. The N region is not shown, while the gaps in diagrams correspond to the region of the substituent (Fig. 2). Structures of para substituted pyridines are symmetric and range of angle φ from 30° to 180° is shown (Fig. 7).

50
Fig. 4 Distributions of angle α : Noncorrected (a) and cone-corrected (b) for pyridine/water CH / O interactions of pyridines with hydrogen bond and noncorrected (c) and cone-corrected (d) for pyridine/water CH / O interactions of pyridines without hydrogen bonds.
${ }_{55}$ The diagrams of distributions of angle φ for pyridines with hydrogen bonds are shown in Fig. 5a, 6 and 7a. The dominant peaks for set of ortho substituted pyridines (Fig. 5a) are in regions $110-120^{\circ}, 150-160^{\circ}, 190-200^{\circ}, 270-280^{\circ}, 300-320^{\circ}$ and not so pronounced in the region $220-230^{\circ}$. These peaks, except ${ }_{60}$ peak at $110-120^{\circ}$, correspond to the areas between pyridine C-H groups (Fig.2) and it indicates preference for regions between pyridines C-H groups. In case of meta substituted pyridines (Fig. 6), one very pronounced peak is present in the region $170-180^{\circ}$, and less pronounced in the region $60-70^{\circ}$, indicating the ${ }_{65}$ preference for CH / O interaction with para and ortho C-H group respectively. In para substituted pyridines (Fig. 7a) there is pronounced peak in region $120-130^{\circ}$ indicating preference for interaction with meta $\mathrm{C}-\mathrm{H}$ group.

In case of pyridines without hydrogen bonds for ortho substituted (Fig. 5b) the most dominant peak is in region 190$200^{\circ}$ and not so pronounced in $110-120^{\circ}, 160-170^{\circ}$ and $300-310^{\circ}$ regions, indicating the preference for interactions in between ${ }_{5}$ para/meta, proximity of meta, between meta/para, and proximity of ortho C-H groups respectively. For the set of meta substituted pyridines the number of interactions is too small preventing analysis (Table 1). Finally, in case of para substituted pyridines (Fig. 7b) one peak is in region $120-130^{\circ}$ and not so pronounced ${ }_{10}$ one in region $90-100^{\circ}$ showing the preference for proximity of meta C-H group and in between meta and ortho C-H groups.

Fig. 5 Distributions of angle φ for: ortho substituted pyridines with (a) 15 and without (b) hydrogen bonds.

Fig. 6 Distributions of angle φ for meta substituted pyridines with hydrogen bonds. The distribution for pyridines without hydrogen bonds is not shown because of small number of interactions.

20 The data in Fig. 5-7 indicate strong influence of substituents on the distributions of angle φ. All distributions have peaks at angle φ corresponding to position of C-H group in vicinity of the substituents (at the position of the substituent there are gaps on the diagrams). In all distributions, except for ortho substituted 25 without hydrogen bond (Fig. 5b), these peaks are the most
pronounced. Visual analysis of the crystal structures showed that in majority of cases water oxygen forms simultaneous interactions with pyridine $\mathrm{C}-\mathrm{H}$ group D and 10 Sybiew Article 9nline example is shown in Fig. S4 (Supplementary Information).
30 Almost all peaks that are not in vicinity of substituent are between two pyridine $\mathrm{C}-\mathrm{H}$ groups. Moreover, data on nonsubstited pyridines also indicate preference for the interactions between two $\mathrm{C}-\mathrm{H}$ groups (Supplementary Information). As was mentioned above, we found quite small 35 number of interactions between nonsubstituted pyridines and water, however, the data on angle φ indicate preference for the interactions between two $\mathrm{C}-\mathrm{H}$ groups. The contacts with φ values close to $90^{\circ}, 150^{\circ}, 210^{\circ}$ and 270° probably are consequence of the bifurcated CH / O interactions with two pyridine $\mathrm{C}-\mathrm{H}$ groups.
${ }_{40}$ In our previous study on CH / O interactions between benzene and water we observed substantial number of bifurcated interactions, 33% of conatcts, using geometrical criteria $\mathrm{d}<2.9 \AA$ and $\alpha<110^{\circ}$. ${ }^{27}$ In this work using less restricted criteria for bifurcated CH / O interaction $\left(\mathrm{d}<3.2 \AA\right.$ and $\alpha<110^{\circ}{ }^{41}$) 122 (94 with
45 hydrogen bonds, 28 without hydrogen bonds) bifurcated interactions were found. It is 10% of all CH / O interactions with pyridines. These results show a lower tendency of pyridine molecules for bifurcated interaction, than benzene molecules. ${ }^{27}$ This is in agreement with our observation that substituents have ${ }_{50}$ strong influence on φ values for substituted pyridines; in Fig. 5-7, the most pronounced peaks are in vicinity of substituents, and, as was mentioned, in large number of CH / O interactions water molecule forms simultaneous interactions with substituent.

${ }_{55}$ Fig. 7 Distributions of angle φ for: para substituted pyridines with (a) and without (b) hydrogen bonds

Ab initio calculations

CH/O interactions of pyridine without hydrogen bond. To ${ }_{60}$ estimate the interaction energies in the linear and bifurcated CH / O interactions of pyridine as CH donor the calculations were performed on pyridine/water model system. Five orientations of the water molecule were considered (Fig. 8). In all cases the O atom is in the plane of the pyridine ring. In the bifurcated ${ }_{65}$ geometries the oxygen atoms were on the bisector of the $\mathrm{C} \cdots \Omega \cdots \mathrm{C}$ angle of pyridine. In these five orientations H-O-H plane of water was perpendicular to the pyridine ring plane, since previous results on CH / O interactions with benzene ring 27 and our preliminary results on pyridine/water complex showed that ${ }_{70}$ perpendicular orientations are more stable than coplanar orientation. The results of the calculations are shown at Table 2.

The calculated energies for the CH / O interactions show that the strongest interaction energy is $-2.16 \mathrm{kcal} / \mathrm{mol}$ (Table 2). It is bifurcated interaction with water interacting with meta and para C-H groups. The energy for the bifurcated interaction with ortho 5 and meta $\mathrm{C}-\mathrm{H}$ groups is $-1.96 \mathrm{kcal} / \mathrm{mol}$. In general, energy of CH / O interactions of pyridine with water tends to increase in order ortho, meta, para. The calculated energy for the linear interaction with C-H group in ortho position is $-1.24 \mathrm{kcal} / \mathrm{mol}$, while energies for $\mathrm{C}-\mathrm{H}$ groups in meta and para positions are ${ }_{10}$ stronger -1.94 and $-1.97 \mathrm{kcal} / \mathrm{mol}$ respectively.

(a)

(b)

(c)

(d)

(e)

Fig. 8 Different geometries of the pyridine/water (W/Pyr) model system. In linear CH / O interactions water interacts with C-H group in (a) ortho,
15 (b) meta, (c) para position. In bifurcated CH / O interactions water interacts with C-H groups in (d) ortho and meta and (e) meta and para positions.

The energy for bifurcated interaction between meta and para ${ }_{20} \mathrm{C}$-H groups of pyridine was also estimated at the $\operatorname{CCSD}(\mathrm{T})$ level at the basis set limit, $\Delta \mathrm{E}_{\mathrm{CCSD}(\text { (T) (imit) }}=-2.30 \mathrm{kcal} / \mathrm{mol}$ (Table 2). The interaction energy calculated at MP2/cc-pVQZ level, -2.16 $\mathrm{kcal} / \mathrm{mol}$, is in good agreement with $\Delta \mathrm{E}_{\mathrm{CCSD}(\mathrm{T})(\text { (imit) }}$.

Geometries of ortho/meta and meta/para pyridine/water ${ }_{25}$ complexes were optimized. The optimized geometries are shown in Fig. 9. Calculated interaction energy on optimized geometries are -2.05 and $-2.21 \mathrm{kcal} / \mathrm{mol}$ respectively (Fig. 9). In both ortho/meta and meta/para pyridine/water complexes distances between water oxygen atom and pyridine $\mathrm{C}-\mathrm{H}$ groups are not the ${ }_{30}$ same (Fig. 9), since C-H groups do not have the same tendencies for the interactions, however, the difference is larger for
ortho/meta-complex.

Fig. 9 Optimized geometries of pyridine/water structures with water 35 interacting with a) ortho and meta C-H group and b) meta and para C-H groups.

In comparison to previous results on CH / O interactions between benzene and water molecules, ${ }^{27}$ pyridine/water interactions are substantially stronger (except the interaction with
${ }_{40} \mathrm{C}-\mathrm{H}$ group in ortho position). The calculated energies of CH / O interactions of benzene with water are $-1.28 \mathrm{kcal} / \mathrm{mol}$ for linear and $-1.38 \mathrm{kcal} / \mathrm{mol}$ for bifurcated interaction. ${ }^{27}$ In terms of geometry, the optimal $\mathrm{O} \cdots \mathrm{H}$ distance for linear CH / O interactions with C-H groups in meta or para position $(2.4 \AA)$ is equal to 5 those of water-benzene linear CH / O interactions $(2.4 \AA)$, but distance is somewhat larger with C-H group in ortho position (2.5 \AA). The bifurcated water/pyridine CH / O interactions have the same optimal $\mathrm{O} \cdots \mathrm{H}$ distance $(2.7 \AA)$ (Table 2) as the bifurcated water-benzene interaction. ${ }^{27}$
50 The calculations on CH / O interactions in pyridine/water systems are in agreement with the results obtained by the crystal structure data analysis from the CSD. Distribution of distance d (Fig. 1) for intermolecular CH / O interactions without hydrogen bonds in crystal structures shows peaks in the range 2.7-2.9 \AA
55 (Fig. 3) which is in agreement with the calculated distance for most stable pyridine/water model system (Table 2). The distribution of angle φ in crystal structures (Fig. s 5-7) indicate that water molecules that are not in vicinity of substituents have tendency to be positioned somewhere in between two pyridine C -
${ }_{60} \mathrm{H}$ groups which is in agreement with calculated larger interaction energies for bifurcated interactions.

Table 2. Calculated interaction energies (in $\mathrm{kcal} / \mathrm{mol}$) and the optimal distances d^{a} (in \AA) of pyridine/water CH / O interactions in model systems without (Fig. 8) and with hydrogen bond (Fig. 10).

Model system	W/Pyr		$\mathrm{W} / \mathrm{PyrW}_{\text {H-bond }}$		$\Delta \Delta \mathrm{E}$
	$\mathrm{d}\left(\mathrm{H}^{\prime} \mathrm{O}\right)$	$\Delta \mathrm{E}$	d (${ }^{\prime \prime}{ }^{\text {O }}$)	$\Delta \mathrm{E}$	
	MP2/cc-pVQZ level				
Ortho	2.5	-1.24	2.4	-1.64	-0.40
Meta	2.4	-1.94	2.4	-2.34	-0.40
Para	2.4	-1.97	2.4	-2.33	-0.36
Ortho/Meta	2.7	-1.96	2.7	-2.44	-0.48
Meta/Para	2.7	-2.16	2.7	-2.58	-0.42
	CCSD (T) level at the basis set limit				
Meta/Para	2.7	-2.30	2.7	-2.69	-0.39

${ }^{a}$ Fig. 1.

5
CH/O interactions of pyridine with simultaneous hydrogen bond. The results of the CSD search presented in this paper showed that most of pyridine/water CH / O interactions are interactions of pyridines with hydrogen bonds. The data from ${ }_{0}$ crystal structures indicated that the hydrogen bond influences CH/O interactions (Fig.s 3-7). To study the influence of pyridine hydrogen bond on pyridine/water CH/O interactions by ab initio calculations, model systems with water molecule as hydrogen donor were used. All model systems had a perpendicular water ${ }_{5}$ molecule with $\mathrm{H}^{\cdots} \mathrm{N}$ distance of $2.0 \AA$, as it was shown to be the most stable geometry for pyridine/water hydrogen bond. ${ }^{32}$ The model systems for linear and bifurcated CH/O interactions are shown in Fig. 10.

(a)

(b)

(c)

(d)
(e)
${ }_{20}$ Fig. 10 Model systems for pyridine/water CH / O interactions of pyridine with hydrogen bond, $\mathrm{W} / \mathrm{PyrW}_{\mathrm{H} \text {-bond }}$. In linear CH / O interactions water interacts with CH groups in (a) ortho, (b) meta, (c) para position. In bifurcated CH / O interactions water interacts with CH groups in (d) ortho and meta and (e) meta and para positions.

25 All interaction energies in systems with hydrogen bonds are stronger than $-2.0 \mathrm{kcal} / \mathrm{mol}$ (except for ortho CH group) and bifurcated interactions are stronger than linear. The strongest interaction is meta/para bifurcated interaction with the energy of $-2.58 \mathrm{kcal} / \mathrm{mol}$ at the MP2/cc-pVQZ level. The energy of this ${ }_{30}$ interaction was also estimated at the $\operatorname{CCSD}(\mathrm{T})$ level at the basis set limit, $\Delta \mathrm{E}_{\mathrm{CCSD}(\mathrm{T})(\text { limit })}=-2.69 \mathrm{kcal} / \mathrm{mol}$ (Table 2).

The difference in the energy of the CH / O interactions of pyridines without and with hydrogen bonds, $\Delta \Delta \mathrm{E}$, (Table 2) shows the influence of hydrogen bond on CH / O interactions.
${ }_{35}$ The difference in energy is between $-0.36 \mathrm{kcal} / \mathrm{mol}$ and -0.48 $\mathrm{kcal} / \mathrm{mol}$; the CH / O interactions of pyridine with hydrogen bond are around 20% stronger. The smallest influence was observed on CH / O interaction in para position which is in accord with NPA analysis presented in Supplementary Information.
40 Geometries of bifurcated meta/para and ortho/meta CH / O interactions of pyridine with hydrogen bond were optimized. In case of ortho/meta CH / O interaction, optimized geometry shows slight preference for meta $\mathrm{C}-\mathrm{H}$ group, as the $\mathrm{H}^{\cdots} \mathrm{O}$ distances between water oxygen and ortho and meta C-H group are $2.67 \AA$
45 and $2.53 \AA$ respectively (Fig. 11a). In optimized geometry for meta/para CH / O interaction $\mathrm{H}^{\cdots} \mathrm{O}$ distances are the same and relatively short ($2.57 \AA$) (Fig. 11b). The calculated energies of CH / O interactions in the optimized structures are $-2.50 \mathrm{kcal} / \mathrm{mol}$ for ortho/meta and $-2.61 \mathrm{kcal} / \mathrm{mol}$ for meta/para CH / O 50 interactions.

(a)

(b)

Fig. 11 Optimized geometry of water/pyridine/water structure with water interacting a) ortho and meta $\mathrm{C}-\mathrm{H}$ group and b) meta and para $\mathrm{C}-\mathrm{H}$ groups.

The calculated CH / O interaction energies in this work, between pyridine and water, indicate that these interactions are relatively strong among CH / O interactions. Energies of CH / O interaction of aromatic ring in amino acid side chains were previously calculated only for linear CH / O interaction. The calculated energy between ortho positioned CH donor group of phenyl ring (as tyrosine model) was $-1.3 \mathrm{kcal} / \mathrm{mol}$, while interactions of indole and imidazole rings, presenting side chains of tryptophan and histidine, were $-2.1 \mathrm{kcal} / \mathrm{mol}$ and $-2.3 \mathrm{kcal} / \mathrm{mol}$, 10 respectively. ${ }^{16}$ Our calculated energies for linear interactions of pyridine with hydrogen bonds are quite similar. However, we calculated also bifurcated interactions and showed that they are stronger (Table 2).
Strength of CH / O interactions of aromatic $\mathrm{C}-\mathrm{H}$ donors ${ }_{15}$ depends on the substituents on the aromatic ring and on the acceptor ${ }^{16,25,26}$ and some of the interactions are stronger than interactions calculated in this work. For example, there are very strong CH / O interactions in 1,2,4,5-tetrafluorobenzene-acetone complex estimated to be $-3.2 \mathrm{kcal} / \mathrm{mol}^{26}$ and bifurcated 20 interactions between caffeine and theophylline estimated to be even $-4.64 \mathrm{kcal} / \mathrm{mol}$. ${ }^{24}$

Conclusions

The analysis of data from the crystal structures in the Cambridge ${ }_{25}$ Structural Database indicate that angular distribution of pyridine/water CH / O interactions do not show strong preference for linear contacts and that pyridine ring substituents have strong influence on CH / O interactions. Visual analysis showed that very often water oxygen forms simultaneous interactions with pyridine
${ }_{30} \mathrm{C}-\mathrm{H}$ group and substituent. Water molecules that are not in vicinity of the substituent have tendency to form bifurcated CH / O interactions with two adjacent CH groups of pyridine.
The calculated energies of pyridine/water CH/O interactions are in agreement with the data in the crystal structures; bifurcated ${ }_{35}$ interactions are stronger than the linear ones.

Calculated energies show that classical hydrogen bonds of the pyridine nitrogen have strong influence on CH / O interactions. Pyridines with hydrogen bond have around 20% stronger CH/O interactions than the pyridines without hydrogen bonds. The ${ }_{40}$ strongest calculated CH / O interaction is bifurcated meta/para interaction of pyridine with hydrogen bond, the energy at $\operatorname{CCSD}(\mathrm{T})$ level at the basis set limit is $-2.69 \mathrm{kcal} / \mathrm{mol}$.

These results can be very important for recognizing CH/O interactions of heteroaromatic rings, since the results show that ${ }_{45}$ nonlinear interactions are energetically favoured.

Notes and references

${ }^{a}$ Department of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia. E-mail: szaric@chem.bg.ac.rs
${ }^{b}$ ICTM, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia. $5_{50}{ }^{\text {c Department of Chemistry, Texas A \& M University at Qatar }}$ P.O. Box 23874 Doha, Qatar
\dagger Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See ${ }_{55}$ DOI: 10.1039/b000000x/

2 S. Scheiner, and T. Kar, J. Phys. Chem. B, 2005, 109, 3681-3689.
3 P. Chakrabarti and R. Bhattacharyya, Prog. Biophys. Mol.Biol., 2007, 60 95, 83-137. View Article Online

4 S. Scheiner, J. Phys. Chem. B, 2006, 110, 180701: $80.79039 / C 3 C E 40759 \mathrm{D}$
5 H. Park, J. Yoon, and C. Seok, J. Phys. Chem. B, 2008, 112 (3), 1041-1048.
6 K. Manikandan and S. Ramakumar, Proteins: Struct., Funct., Bioinf., 65 2004, 56, 768-781.

7 C. Bissantz, B. Kuhn, and M. Stahl, J. Med. Chem. 2010, 53, 50615084.

8 (a) G. R. Desiraju, Chem. Commun., 2005, 2995-3001; (b) K. M. Sureshan and R. G. Gonnade, CrystEngComm, 2013, 15, 1676-1679;
70 (c) S. Jin, M. Guo, D. Wang and H. Cui, J.Mol.Struct., 2011, 1006, 128-135. (d) R. W. Seidel, R. Goddard, J. Breidung, P. Bamfaste, D. Neff and I. M. Oppel, Structural Chemistry, 2013, 24, 181-189.
9 K. Aburaya, K.Nakano, K. Sada, N. Yoswathananont, M. Shigesato, I.Hisaki, N Tohnai, and M.Miyata, Cryst. Growth Des., 2008, 8, 1013-1022.
10 P. D. Vaz, M.M. Nolasco, F. P. S. C. Gil, P. J. A. Ribeiro-Claro and J. Tomkinson, Chem. Eur. J., 2010, 16, 9010 - 9017.

11 M. V. Sigalov, E. P. Doronina and V. F. Sidorkin, J. Phys. Chem., 2012, 116, 7718-7725.
${ }_{80} 12$ P. W. Baures, A.M. Beatty, M. Dhanasekaran, B.A. Helfrich,W. Pe'rez-Segarra, and J. Desper, J.Am.Chem.Soc, 2002, 124, 1131511323.

13 S. Scheiner, and T. Kar, J. Phys. Chem. A, 2008, 112, 11854-11860.
14 K. Compaan, R.Vergenz, P. V. R. Schleyer and I. Arreguin, Int. J. 85 Quant. Chem., 2008, 108, 2914-2923.

15 J. Joseph and E. D. Jemmis, J.Am.Chem.Soc., 2007, 129, 4620-4632.
16 S. Scheiner, T. Kar, and J. Pattanayak, J. Am. Chem. Soc., 2002, 124, 13257-13264.
17 (a) Y. Gu, T. Kar, and S. Scheiner, J. Am. Chem. Soc., 1999, 121, 9411-9422.
18 H. Yang, M. W. Wong, J. Am. Chem. Soc., 2013, 135, 5808-5818.
19 F. Dumitru, Y. M. Legrand, M. Barboiu and A. van der Lee, Acta Cryst. B, 2013, 69, 43-54.
20 (a) A. Nangia, Cryst. Eng., 2001, 4, 49-59; (b) T. Steiner, Chem. 95 Commun., 1997, 727-734.

21 (a) T. Steiner and G. R. Desiraju, Chem. Commun., 1998, 891-892. (b) J. Kroon, J. A. Kanters, Nature, 1974, 248, 667-669.

22 V. Nanda and A. Schmiedekamp, Proteins: Struct., Funct., Bioinf. 2008; 70, 489-497.
10023 S. Tsuzuki, T. Uchimaru and M. Mikami, Theor. Chem. Acc., 2012, 131, 1192.
24 M. Karthika, L. Senthilkumar and R. Kanakaraju. Comp. Theor. Chem., 2012, 979, 54-63.
25 C. Niebel, V. Lokshin, M. Sigalov, P. Krief and V. Khodorkovsky, Eur. J. Org. Chem., 2008, 3689-3699.
26 V. Venkatesan, A. Fujii and N. Mikami, Chem. Phys. Lett., 2005, 409, 57-62.
27 D. Ž. Veljković, G. V. Janjić and S. D. Zarić, CrystEngComm, 2011, 13, 5005-5010.
11028 A. Ebrahimi, M. Habibi and H.R. Masoodi, Chem. Phys., 2007, 340, 85-92.
29 F. M. Raymo, M. D. Bartberger, K. N. Houk and J. K. Stoddart, J. Am. Chem. Soc., 2001, 123, 9264-9267.
30 K. Pei, Y. Li and H. Li, J.Mol.Struct., 2003, 660, 113-118.
11531 D. Escudero, C. Estarellas and A. Frontera, Chem. Phys. Lett., 2009, 468, 280-285.
32 D. B. Ninković, G. V. Janjić and S. D. Zarić, Cryst. Growth Des., 2012, 12, 1060-1063.
33 (a) B. D. Ostojić, G. V. Janjić and S. D. Zarić, Chem. Comm.,
120 2008, 48, 6546; (b) G. V. Janjić, D. Z. Veljković and S. D. Zarić, Cryst. Growth Des., 2011, 11, 2680-2683.
34 (a) Y. Umezawa, S. Tsuboyama, H. Takahashi, J. Uzawa and M. Nishio, Tetrahedron 1999, 55, 10047-10056; (b) H. Suezawa, T. Yoshida, Y. Umezawa, S. Tsuboyama and M. Nishio, Eur. J. Inorg.
125 Chem., 2002, 12, 3148-3155. (c) Z. D. Tomić, D. N. Sredojević and S. D. Zarić, Cryst. Growth Des., 2006, 6, 29-31. (d) D. N. Sredojević, G. A. Bogdanović, Z. D. Tomić and S. D. Zarić, CrystEngComm, 2007, 9, 793-798.

[^0]35 (a) C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 3885-3896. (b) G. Janjić, J. Andrić, A. Kapor, Z. D. Bugarčić and S. D. Zarić, CrystEngComm, 2010, 12, 3773-3779.
36 F. H. Allen, Acta Crystallogr. Sect. B, 2002, 58, 380.

38 I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. Mc Cabe, J. Pearson and R. Taylor, Acta Cryst., Sect. B, 2002, 58, 389.

1039 (a) C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618-622; (b) M. Head-Gordon, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1988, 153, 503-506.
40 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-566.
41 T. Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys., 15 1997, 106, 9639-9646.
42 M. J. Frisch, et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
43 P.A. Wood, F.H. Allen and E. Pidcock, CrystEngComm, 2009, 11, 1563-1571.
2044 T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48-76.

Crystallographic and ab initio Study of Pyridine CH/O Interactions. Linearity of the interactions and influence of pyridine classical hydrogen bonds

Jovan Lj. Dragelj, Goran V. Janjić, Dušan Ž. Veljković, and Snežana D. Zarić

The study of pyridine/water $\mathbf{C H} / O$ interactions showed that nonlinear interactions are energetically favoured.

[^0]: 1 R. K. Castellano, Curr. Org. Chem., 2004, 8, 845-865.

