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Abstract 

Periodic operations of a non-isothermal CSTR with n-th order reaction, subject to a single 

input modulation, is analyzed using the nonlinear frequency response (NFR) method, 

introduced in our previous publications. The method is based on deriving the 
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asymmetrical second order frequency response function (FRF) and analyzing its sign. In 

Part I of this paper, periodic operation with modulation of the inlet concentration or flow-

rate of the reaction stream is analysed. As a result, conditions regarding the reaction order, 

process parameters and frequency of the input modulation are identified that need to be 

fulfilled in order to achieve process improvement through the periodic operation 

compared to conventional steady state operation. The method is applied for a numerical 

example from literature and the results obtained by the NFR method are compared with 

the results of numerical simulation. Good agreement is obtained, except for imposed 

forcing frequencies close to the resonant frequency and high forcing amplitudes. 
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1. Introduction 

Periodic operation of different chemical engineering processes, especially chemical reactors, 

has been a research topic of a number of research groups in the last 50 years (Douglas and 

Rippin, 1966; Douglas, 1967; Horn and Lin, 1967; Renken, 1972; Bailey, 1973; Watanbe et 

al., 1981; Schadlich et al., 1983; Silveston 1987; Sterman and Ydstie, 1990a, 1990b, 1991; 

Chen and Hwang, 1994; Silveston et al. 1995; Silveston 1998). 

Periodic modulation of one or more inputs can provide better average performance compared 

to the optimal steady-state operation (increased conversion, improved selectivity, increased 

yield, increased catalytic activity etc). The source of possible improvement lies in the process 

nonlinearity. Many experimental and simulation studies verify that it is often advantageous to 

exploit the nonlinear behaviour of chemical reactions and to operate in a dynamic regime by 

periodic modulation of one or more inputs (Sterman and Ydstie, 1991).  

For nonlinear systems with periodic modulation one or more inputs, the average value of the 

output is different from the steady-state value. Although this difference is small for mild 

nonlinearities, for highly nonlinear systems or those which exhibit resonance, the deviations 

might be very significant (Douglas, 1967). 

Identification of candidate systems for process enhancement through periodic operation and 

estimation of the magnitude of such enhancement have occupied many researchers. More 

details about previously proposed criteria or techniques for evaluation of periodically operated 

processes can be found in (Petkovska and Seidel-Morgenstern, 2013). 

These previous theoretical approaches have not provided yet general methods to predict the 

possibility of process improvements (Petkovska and Seidel-Morgenstern, 2013). In practice, 

testing whether a periodic operation leads to an increased productivity as compared to the 

corresponding steady-state operation, is usually performed by long and tedious experimental 
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and/or numerical work. Therefore, there is still a need for developing simple and reliable 

methods which would enable quantitative evaluation of the possibility of process 

improvements through periodic operations (Petkovska and Seidel-Morgenstern, 2013). 

In our previous work, we introduced the nonlinear frequency response (NFR) method, which 

can give in early development stages a fast answer whether working under periodic conditions 

could be favourable. The NFR method, which is applicable for weakly nonlinear systems 

(Weiner and Spina, 1980), is based on Volterra series, generalized Fourier transform and the 

concept of higher order frequency response functions (FRFs) (Markovi� et al., 2008). The 

NFR method also enables approximate evaluation of the magnitude of the improvement for 

weakly nonlinear systems if it can be achieved by periodic operation. 

Till now, the NFR method has been applied for evaluation of periodic operations of different 

types of reactors (continuous stirred tank reactor (CSTR), plug flow tubular reactor and 

dispersive flow tubular reactor) with feed concentration modulation for simple isothermal 

homogeneous n-th order reactions (Markovi� et al., 2008). The same type of analysis was 

used for periodic operation of a CSTR with a simple isothermal heterogeneous catalytic n-th 

order reaction (Petkovska et al., 2010).  

In one of our previous papers, the NFR method was extended for evaluation of periodic 

operation with simultaneous modulation of two inputs, and tested on an isothermal CSTR in 

which a simple isothermal n-th order homogeneous reaction takes place and inlet 

concentration and flow-rate are modulated simultaneously (Nikoli�-Pauni� and Petkovska, 

2013). 

In this paper, for the first time the NFR method is applied for evaluation of periodically 

operated non-isothermal reactors, for which the temperature effects of the chemical reaction 

can not be neglected. This problem has already been treated in the literature (Douglas and 
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Ritter 1970; Sterman and Ydstie 1990; Dorawala and Douglas 1971; Silveston and Hudgins, 

2004). There are several parameters which could be periodically modulated: the inlet 

concentration, the flow-rate, the temperature of the feed stream and the temperature of the 

heating/cooling fluid. Since the potential for improvement through periodic operation strongly 

depends on the degree of the nonlinearity of the system, it is expected that the non-isothermal 

CSTR, which is highly nonlinear, would offer a lot of potential for process improvement. The 

non-isothermal CSTR is also a good test for the NFR method, considering that the method is 

valid for weakly nonlinear systems. 

It is well-known that a non-isothermal CSTR can in principle exhibit unstable behaviour 

(Douglas, 1972). It should be noticed that the NFR method is applicable only for stable 

systems, so stability analysis should always be performed first.  

In this paper, the NFR method is applied for evaluation of periodic operation of a non-

isothermal CSTR in which a simple n-th order homogeneous reaction takes place, when either 

the inlet concentration and or the flow-rate are modulated inputs. In Part II of this paper, we 

will analyse the periodic operation of the non-isothermal CSTR when the modulated inputs 

are the temperature of the inlet reaction stream or the temperature of the cooling/heating fluid.�
2. Nonlinear frequency response method for evaluating periodic processes 

Frequency response (FR) represents a quasi-stationary response of the system to a periodic 

(sinusoidal or co-sinusoidal) input modulation, which is achieved when the transient response 

becomes negligible (theoretically for infinite time) (Douglas, 1972). 

FR of a linear system is a periodic function of the same shape and frequency as the input, but 

with different amplitude and phase from the input values. The mean value of this periodic 

function is equal to the steady state value. Frequency response function of a linear system is 



6�
�

defined by the amplitude ratio and the phase difference of the output and input in the quasi-

stationary state (Douglas, 1972).  

On the other hand, FR of a nonlinear system is a complex periodic function and it cannot be 

represented by a single frequency response function. FR of a nonlinear system, in addition to 

the basic harmonic, which has the same frequency as the input modulation, also contains a 

non-periodic, the so called DC component, and an infinite number of higher harmonics 

(Douglas, 1972; Weiner and Spina, 1980; Petkovska and Seidel-Morgenstern, 2013). One 

approach for analyzing FRs of nonlinear systems is the concept of higher order frequency 

response functions (FRFs) which is based on Volterra series and the generalized Fourier 

transform (Weiner and Spina, 1980). 

The nonlinear model G of a weakly nonlinear system in the frequency domain can be replaced 

by an infinite sequence of frequency response functions (FRFs) of different orders (Weiner 

and Spina, 1980). These FRFs are directly related to the DC component and different 

harmonics of the response (Weiner and Spina, 1980).  

If the input is defined as a single harmonic periodic function with forcing amplitude A and 

forcing frequency �: 

���� � �� 	 
��
����� � � � � � � � � (1) 

for infinite time, the output of a weakly nonlinear system is obtained as a sum of a DC 

component and the first, second, … harmonics: 

���� � �� 	 ��� 	 �� 	 ��� 	 � 

������� �� 	 ��� 	 �� ������ 	 ��� 	 ��� ������� 	 ���� 	 �� � � � � (2) 
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The DC component, which is responsible for the time-average performance of periodic 

processes and which is most essential in this paper, can be expressed as the following infinite 

series (Weiner and Spina, 1980): 

��� � � ����� �����  �� 	 ! ����" �"��� ��  ��  �� 	 �     (3) 

where �����  ��  represents the asymmetrical second order frequency response function, 

�"��� ��  ��  �� the asymmetrical fourth order FRF, etc. 

For weakly nonlinear systems, the contributions of the higher other FRFs decrease with the 

increase of their order (Petkovska and Seidel-Morgenstern, 2013). 

The dominant term of the DC component is proportional to the asymmetrical second order 

FRF, �����  �� and the approximate value of the DC component can be easily calculated 

from (Markovi� et al., 2008):  

��� # � ����� �����  ��� � � � � � � � � (4)�

In this way, the sign of the asymmetrical second order FRF �����  �� defines the sign of the 

DC component. Consequently, in order to decide whether a particular periodic operation is 

favourable compared to the optimal steady-state operation, it is enough to derive and analyse 

the second order asymmetrical FRF (Markovi� et al., 2008). It is also possible to calculate 

approximately the magnitude of the improvement, by estimating the value of the second order 

asymmetrical FRF for chosen values of the forcing amplitude and forcing frequency. 

The procedure for derivation of the higher order FRFs is standard and can be found in 

(Petkovska 2001, 2006; Petkovska and Do, 1998; Petkovska and Markovi�, 2006; Markovi� 

et al., 2008). The derivation process is recurrent, meaning that the first order FRFs have to be 

derived first, than the second order FRFs, etc. For our current application, we limit our 

derivations to the first order and the asymmetrical second order FRFs.  
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NFR method for evaluation of process improvement in periodically operated chemical reactor 

Let us consider a continuously operated chemical reactor in which a simple reaction 
 $
%&�'(���
� takes place and one of the inputs is modulated periodically around a previously 

established steady-state. If conversion is of interest, the outlet concentration of the reactant A 

can be considered as the output of interest. If the reactor is a nonlinear system, the mean value 

of the outlet concentration of the reactant ���)� during periodic operation will be different 

from the outlet steady-state concentration ������. The difference � � ��)  ����, which is the 

indicator of the process improvement, depends on the type of nonlinearity. If � * 0, the 

periodic operation can be considered as favorable, as it corresponds to increased conversion, 

in comparison to the steady-state operation (Markovi� et al., 2008). 

On the other hand, the difference between the time-average of the output of a periodically 

perturbed system and its steady-state value (+� is equal to the DC component of the outlet 

concentration. Since the dominant term of the DC component is proportional to the 

asymmetrical second order function �����  �� (Petkovska et al., 2010), the time average 

response can be approximately estimated from this function: 

,� ��)  ���� - ����� # .� ����� �����  ��/ ����� � � � � � (5) 

If the second order asymmetrical FRF is negative ��2���  �� * 0 ) than the average 

concentration of the reactant ��) will be lower than the steady-state outlet concentration ���� 

�,* 0�, i.e. the conversion will be increased. 

By using equation (5) the magnitude of the process improvement can be approximately 

calculated, for any chosen forcing frequency and forcing amplitude. 
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3. Mathematical model of a non-isothermal CSTR carrying out a simple reaction 

In this work, the NFR method is used to analyze the performance of a periodically operated 

non-isothermal CSTR in which a homogeneous n-th order reaction 
 0 %&�'(���
� takes 

place. The effects of modulating the concentration of the reactant in the inlet stream and the 

flow-rate of the feed stream on the reactor performance are analyzed in this first part. 

The rate law is 

� � � & � 12345678��9�� � � � � � � (6) 

where ��  is the reactant concentration, T temperature, 12  the preexponential factor in the 

Arrhenius equation, :� activation energy and R the universal gas constant. 

The material balance for the reactant A is: 

� ; <=6<> � ?���@  ?��  12345678��9�;� � � � � � � (7)�
and the energy balance � � �  

� ;A�B <C<> � ?A�BD@  ?A�BD 	 � EFG�12345678��9;  H
I�D  DJ�� � (8)�
�
where t is time, F the volumetric flow-rate of the reaction stream, V the volume of the reactor, 

,FG  heat of reaction, U the overall heat transfer coefficient, 
I  the surface area for heat 

exchange, � density, �B  heat capacity. The following subscripts are used in the balance 

equations: i for inlet and J for heating/cooling fluid in the reactor jacket. 

It is assumed that volume is constant (; � ��K
��, i.e. that the inlet and outlet flow-rates are 

equal, that the temperature of the heating/cooling fluid does not change from inlet to outlet 

and that all physical and chemical properties are independent on temperature (A�B � ��K
���
,FG � ��K
��.  

In steady-state, the material and energy balances are given with the following expressions: 

=6L�M=6�M � 1 	 1234 5678M����941 NOM � 1 	 P� � � � � � � � (9)�
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D@��D� � 1  � ,FG�1234 Q6GCM����9A�BD�
;?� 	 H
I?�A�B  H
IDJ��?�A�BD� � 1 	 R 	 S�  T�

� � � � � � � � � � � � (10) 

where subscript s denotes the steady-state values and the following auxiliary parameters have 

been introduced  

P � � 1234 5678M����941 NOM���R � ,U7VWXY 5678M=6�MZ
[=\CM

NOM����T � ]�^C_�MOM[=\CM ���` � Q6GCM � S� � ]�^OM[=\             (11) 

These parameters are functions of the physical parameters of the reactor, as well as the 

steady-state values of the concentration and temperature in the reactor (cA,s and Ts).�
For analysis in frequency domain, it is convenient to transform the model equations into 

dimensionless form, by introducing dimensionless variables as relative deviations from their 

steady-state values. The definitions of the dimensionless variables are given in Table 1.  

Table 1 

Hereby Ti,s and TJ,s represent constant steady-state values of the temperatures of the feed 

stream and in the jacket. Since these temperature are not modulated, the corresponding a@ and 

aJ are zero in this study.  

After introducing the dimensionless variables and the auxiliary parameters in model Eqs. (7) 

and (8), the model equations become: 

'b'c � �d 	 P��e 	 d��b@ 	 d�  �e 	 d��b 	 d�  12����94f ;?� 34 Q6GCM�ghf��d 	 b�9 

            (12) 

'a'c � �d 	 R 	 S�  T��e 	 d��a@ 	 d�  �e 	 d��a 	 d�  S��a 	 d�  TiaJ 	 dj
 ,FG12����9 ;A�BD�?� 34 Q6GCM�ghf��d 	 b�9 

            (13) 
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For applying the NFR method, all nonlinearities in the model equations should be given in the 

polynomial form (Weiner and Spina, 1980). After expanding the nonlinear terms 34 5678M�klm� 
and �d 	 b�9 in the Taylor series form, the dimensionless model equations are transformed 

into the following form: 

'b'c � �d 	 P��e 	 d��b@ 	 d�  �e 	 d��b 	 d�
 P .d 	 Kb 	 `a 	 K`ba 	 .`��  `/ a� 	 d� K�K  d�b� 	 � / 

� � � � � � � � � � � � (14) 

'a'c � �1 	 R 	 S�  T��e 	 d��a@ 	 d�  �e 	 d��a 	 d�  S��a 	 d� 	 T�aJ 	 d�
 R .d 	 Kb 	 `a 	 K`ba 	 .`��  `/ a� 	 d� K�K  d�b� 	 � / 

           (15) 

The Taylor series expansions of the nonlinear terms 34 5678M�klm�  and �d 	 b�9  in the 

dimensionless model equations are given in Appendix A. In Eqs. (14) and (15) only the first 

and second order terms are shown. 

 

4. Frequency response functions of the non-isothermal CSTR 

4.1. Definitions of the FRFs 

In the case of a single input modulation, the non-isothermal CSTR represents a nonlinear 

system with one modulated input and two outputs. The modulation of a chosen input, for the 

non-isothermal reactor, will cause changes of both the concentration and the temperature in 

the reactor. Consequently, in order to describe the behaviour of non-isothermal CSTR for a 

single input modulation, for each modulated input it is necessary to derive two sets of FRFs, 

as presented in Figure 1.  



12�
�

Figure 1 

The following notations are used in Figure 1: X for dimensionless input modulation (in this 

work, inlet concentration or flow-rate), C dimensionless outlet concentration of reactant, a 

dimensionless outlet temperature, �9�n  the n-th order FRF correlating the outlet concentration 

to the modulated input X and ?9�n the n-th order FRFs correlating the outlet temperature to the 

modulated input X. Accordingly, the following four sets of FRFs need to be derived: 

� Set 1: FRFs which correlate the outlet concentration of the reactant with the modulated 

inlet concentration (�1������ �2������  ��� o � 

� Set 2: FRFs which correlate the outlet temperature with the modulated inlet 

concentration (?1������ ?2������  ��� o � 

� Set 3: FRFs which correlate the outlet concentration with the modulated flow-rate 

(�1�O���� �2�OO���  ��� o � 

� Set 4: FPFs which correlate the outlet temperature with the modulated flow-rate 

�?1�O���� ?2�OO���  ��� o � 

From the aspect of process improvement, the change of the outlet temperature is not of 

particular interest, but it might be relevant from the aspect of safety and equipment 

limitations. In that case, the change of outlet temperature owing to periodic operation could be 

estimated in an analogous way as the outlet concentration, from the asymmetrical second 

order FRF which correlates the outlet temperature with the modulated input: 

,C� .� ����� ?��nn���  ��/ D�        (16) 

The F-functions are not subject of the analysis reported here, since we are mainly interested in 

the outlet concentration and the conversion change of the periodically operated non-

isothermal CSTR. However, the F-functions have to be derived since they are necessary in the 
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derivation process of the G-functions. Therefore, the derivation of the F-functions will be 

provided without further analysis. 

4.2. Derivation of the FRFs 

The basic steps of the procedure for derivation of the frequency response functions are: 

1. The input modulation (inlet concentration b@�c� or flow-rate e�c�) is defined in the 

form of a co-sinusoidal function, 

2. The outlet concentration b�c�  and temperature a�c�  are expressed in the Volterra 

series form, 

3. The expression for the modulated input (b@�c� or e�c�) and for b�a�,�c�a� from step 

1 and step 2, are substituted into the corresponding dimensionless model equations 

(eqs. (14) and (15)), 

4. The method of harmonic probing is applied to the equations obtained in step 3, i.e., the 

terms with the same amplitude and frequency are collected and equated to zero. 

5. The equations obtained in step 4 are solved. 

The final expressions for the asymmetrical second order FRFs which correlate the outlet 

concentration with the modulated input are given below while and the most important steps of 

the derivation procedure are given in Appendix B. 

�
4.2.1.  Periodic operation with modulation of the inlet concentration 

Starting from the dimensionless model equations (14) and (15), in which all input variables 

except the inlet concentration are set to zero ( e � p� a@ � p� aJ � p ), the GC- and FC-

functions are derived. Both first order and asymmetrical second order FRFs are given in 

Appendix B.1, together with the main steps of the derivation procedure. 
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Here we consider only the asymmetrical second order FRF corresponding to the outlet 

concentration, �2������  �� , as it contains information regarding the conversion change 

owing to periodic operation. The final expression of �2������  �� is:  

�2������  �� �  1
2

� P�1 	 S��d 	 KP 	 R` 	 KPS� 	 S�
q� �d 	 P��rs�d 	 KP 	 R` 	 KPS� 	 S��  ��t� 	 ���� 	 R` 	 S� 	 KP��� 

            (17) 

where the term in the numerator � is defined as: 

r � K�K  d��� 	 s�d 	 S���  �R�`tK�  s�d 	 S� 	 R`��tK � rf�� 	 r�  (18) 

 

4.2.2. Periodic operation with modulation of the flow-rate 

The GF- and FF-functions are again derived starting from the dimensionless model equations 

(13) and (14), in which, this time, all input variables except the flow-rate are set to zero 

(b@ � p� a@ � p� aJ � p). The first order and asymmetrical second order FRFs are given in 

Appendix B.2, together with the main steps of the derivation procedure. 

Here we give the final expression for the asymmetrical second order FRF which correlates the 

outlet concentration to the modulated flow-rate: 

���OO���  �� �  d� dd 	 KP 	 R` 	 KPS� 	 S� 

q us�d 	 KP 	 R` 	 KPS� 	 S��  ��t� 	 ���� 	 R` 	 S� 	 KP�� 

         (19) 

where the term u in the numerator can be expressed in the form of a polynomial with respect 

to the forcing frequency  
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u � uf�� 	 u�          (20) 

with �1 and �2 which are complex functions of the reaction order n and the model parameters 

������	��
 and St: 

uf � Pv�d 	 S��K� 	 P��d 	 S��i�  P 	 �`�R 	 S�  T�jK 	 �P�d 	 S� 	 R`�
	 P`�`  ���d 	 S���R 	 S�  T�� 

            (21) 

2 3

2

2 1
�

1 ( )

1 1

t S t S t S t S t

S t

n S t S t S t


 � 	 


	 	 
 


� 	 	 	 
 �

� � � � � �

� � � � �

� � � � � �22 1t S t S t� 	 � 	 � 
 � 	� � � � � �

 

 

u�

� wPv`�`  ���d 	 S���S�  T��  �Pv`�S�  T��d 	 S�� 	 Pv�d 	 S���d 	 S�  `S� 	 `T����
����������������������������������������	�Pv`�d 	 S���d 	 S�  `S� 	 `T��S�  T� x K�

	 s�P��d 	 S� 	 R`��d 	 S�  `S� 	 `T��d 	 S��  �P�`�d 	 S���R 	 S�  T�
 �P�`�S�  T��d 	 R` 	 S�� 	 �P�`�`  ���d 	 S���S�  T��R 	 S�  T�
 Pv�d 	 S���d 	 S�  `S� 	 `T�� 	 �P�`�d 	 S���d 	 S�  `S� 	 `T��R 	 S�  T�tK
	 s�P�d 	 S� 	 R`���d 	 S�  `S� 	 `T�  �P`�d 	 R` 	 S���R 	 S�  T�
	 P�`�  �`��d 	 S���R 	 S�  T��t 
            (22) 

 

4.2. Stability analysis 
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Considering that the NFR method is applicable only for stable systems and the fact that non-

isothermal CSTR can be unstable, it is important to determine the domain in which the system 

is stable.  

By analysis of the characteristic equation which corresponds to the linear model, we can 

determine the domain of stability and oscillatority. The characteristic equation of the 

linearized model can be obtained by equating the denominator of the first order FRF (G1C, 

F1C, G1F and F1C, given in Appendix B all have the same denominator) with zero, after 

replacing j� with the Laplace complex variable s. For the non-isothermal CSTR defined by 

model equations (11) and (12) the characteristic equation of the system is the following 

second-order equation: 


�� 	 
�� 	 R` 	 S� 	 KP� 	 �d 	 KP 	 R` 	 KPS� 	 S�� � p    (23) 

The roots of this characteristic equation are: 

%1�2 � 
B� y zi
B�2  �B�j� � � � � � � � (24)�
where: 


B� �  �2h9{h|>h}~�
2

������B� � �1 	 KP 	 R` 	 KPS� 	 S��� � �
� (25) 

The necessary and sufficient condition that a linear system is stable is that all roots of 

characteristic equation are negative or have negative real parts (Douglas, 1972). Although this 

stability condition is valid only for linear systems, this analysis can provide valuable 

information about the stability of a nonlinear system in the vicinity of the steady-state, based 

on the Lyapunov theorem (Douglas, 1972). The oscillatority of the system is also determined 

by the position of the roots of the characteristic equation. If all roots of the characteristic 
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equations are real, the system will be non-oscillatory, otherwise, if the roots of characteristic 

equations are conjugate-complex, the system will be oscillatory. 

Based on all this, we can conclude that for: 

� 
B� * 0��������B� � 0�������
B�� � �B� – the system is stable and nonoscillatory��
� 
B� * 0��������B� � 0�����
B�� * �B��������system is stable and oscillatory��
� 
B� � 0������B� � 0�����
B�� � �B��������system is unstable and nonoscillatory,�
� 
B� � p������B� � p�����
B�� * �B��������system is unstable and oscillatory��

The areas of stability and oscillatority, depending on the auxiliary stability parameters 
B� 

and �B� are graphically presented in Figure 2. 

Figure 2  

 

The nonlinear frequency response method and the concept of higher order FRFs can be 

applied only in the domain in which the system is stable, i.e. for 
B� * p� �B� � 0� 
If the characteristic equation of the non-isothermal CSTR (equation (23)) is given in its 

standard form (Douglas, 1972): 


� 	 ���9
 	 �9� � p         (26) 

the commonly used  model parameters, damping coefficient 
 and natural frequency �n, can 

be defined. It is a well known fact that a stable oscillatory system, with a damping coefficient 


�less than 0.707 exhibits resonance (amplification of the inlet modulation for some input 

frequencies) (Douglas, 1972). The frequency at which the amplitude of the outlet is maximal 

is called resonant frequency and depends on 
 and the natural frequency �n of the oscillatory 

system (Douglas, 1972):  

�� � �9�d  ���          (27) 
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It can be shown that this resonant frequency can be calculated from the stability parameters  

Aps and Bps, in the following way: 

��� � z�B�  �
B��          (28) 

Previous investigations suggest that the maximum improvement of a forced periodic 

operation in comparison with the optimal steady-state operation can be achieved around the 

resonant frequency (Ritter and Douglas, 1970). 

 

 

 

 

5. Analysis of the signs of the asymmetrical second order FRFs  

5.1. Modulation of the inlet concentration 

By using the stability parameters 
B�������B� defined in equation (25), equation (17) for the 

second order asymmetrical FRF ��������  �� can be written in the following way:  

�2������  �� �  1
2

�P�1 	 S���B� � �d 	 P��r�
B�� �� 	 ��B�  ����� 
            (29) 

It is necessary to point out that all auxiliary parameters (P� `� S�� T) are always positive, except 

R which is positive for endothermic and negative for exothermic reactions. 

Considering that for a stable system 
B� * p� �B� � 0 , it can easily be concluded that sign of 

the second order asymmetrical FRF ��������  �� depends only on the sign of the term r and 

that:  


��K���������  ��� �  
��K�r�� � � � � � � � (30) 
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Based on this, the sign analysis of FRF ��������  �� is reduced to sign analysis of the term 

r, which depends on the reaction order K, values of the auxiliary parameters R� `� S� and the 

forcing frequency �. The reaction order K and the values of the auxiliary parameters are 

characteristics of the particular system. Considering this and the fact that forcing frequency 

can be chosen, it is interesting to analyse how the sign of the second order asymmetrical FRF 

depends on the forcing frequency �. 

The sign of ��������  �� will change at certain frequency, if the following equation has real 

solutions: 

��������  �� � p � r � p � 

�K�K  d��� 	 s�d 	 S���  �R�`tK�  s�d 	 S� 	 R`��tK � p  (31) 

If equation (31) has no real solution for �, the function ��������  �� is either positive or 

negative in the whole frequency range.  

The solutions of equation (31) are:  

�f�� � y�� � yz�fh|>h}~��49��fh|>��4�}�~�94f       

 (32) 

These solutions will be real if the numerator and denumenator of the rational function under 

the square root have the same sign. The sign of the denominator depends on the reaction order 

and changes for n=1. The sign of the numerator also depends on the reaction order and 

changes for: 

K � K� � �fh|>h}~��
�fh|>��4�}�~         (33) 

The results of the sign analysis in respect to the reaction order and the frequency range are 

summarized in the Table 2.   

Table 2 

5.2. Modulation of the flow-rate 
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The final expression for the asymmetrical second order FRF ���OO���  �� , defined by 

equation (19) can again be transformed into more appropriate form for sign analysis, by using 

the definitions of the stability parameters Aps and Bps:  

���OO���  �� �  d��B�
u�
B�� �� 	 ��B�  ���� 

            (34) 

In principle, the sign of ���OO���  ��, depends on the reaction order K, forcing frequency �, 

and the auxiliary parameters P� R� `� T, S�. From equation (34) it can be easily concluded that 

the sign of ���OO���  �� depends only on the sign of the auxiliary function in the numerator, 

u� in the following way: 


��K����OO���  ��� �  
��K�u�       (35) 

Thus, the sign analysis of ���OO���  �� can be further reduced to sign analysis of u, which 

was defined in equation (20) as u � uf�� 	 u�  (uf  and u�  are complex functions of the 

reaction order, defined in equations (21) and (22)). 

The frequency for which the function ���OO���  �� changes its sign is obtained from the 

following condition:  

���OO���  �� � p��� � �u � p � uf�� 	 u� � p      (36) 

If the solutions of equation (36): 

�f�� � y�O � yz u�um         (37) 

are real, which will happen if uf and u� have opposite signs,  ���OO���  �� will change its 

sign for �F, while if they are complex-conjugates, ���OO���  �� will be positive or negative 
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in the whole frequency range. A summary of the sign analysis for the  ���OO���  �� function 

is given in Table 3.  

Table 3 

 

6. Numerical Example 

6.1. Definition of the numerical example 

In order to clarify the results given in Sections 4 and 5, a numerical example is chosen for 

simulation of the asymmetrical second order FRFs and analysis of their sign, and for 

comparison of the results obtained by the NFR method and with numerical simulation. The 

values of the model parameters used for simulations are given in Table 4. The parameters 

listed in Table 4 correspond to an exothermal first-order reaction and were taken from of a 

classical textbook by Marlin (Marlin, 2000) (Example 3.10). 

 

Table 4 

For the numerical example and the steady state input variables defined in Table 4��it was 

determined that there exists only one steady state solution, defined by ���� � 0�3466�1����
�v and D� � 388��. It should be pointed out that this steady-state has not been optimized. 

 

6.2. Stability analysis for the numerical example 

Using the parameter values defined in Table 4, the following values of the stability parameters 

are calculated using equation (24): 
B� �  p�� * p , �B� � �� � p , 
B��  �B� � �d * p . 

Based on these values we can conclude that the system is oscillatory stable, therefore 

application of the NFR method makes sense for this forced periodically operated non-

isothermal CSTR. 
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The damping coefficient for this system, which was calculated based on equations (23) and 

(26), is quite low, � � p�d�!, so extensive resonance is expected. The resonant frequency is 

�� � ���� (eq. 28). 

It is also important to choose the amplitudes of the input modulation for which the system 

remains stable. In Figures 3 and 4 we show the stability parameter 
B� and �B� vs. cAi,s and Fs, 

respectively, with steady-state values of all other inputs fixed at their values given in Table 4. 

As it can be seen from these figures, the parameter 
B�  is negative and the parameter �B� 

positive for all values of cAi,s and Fs, i.e. the amplitudes of the inlet concentration and flow-

rate are not limited from the stability aspect. However, considering physical restrictions, the 

maximal forcing amplitudes are 100% (the inputs can not be negative). 

Figure 3 

Figure 4 

6.3. Simulation of the asymmetrical second order FRFs  

In Figures 5 and 6, graphical representations of the asymmetrical second order FRFs 

��������  �� and ���OO���  �� vs. frequency are given. 

Figure 5 

Figure 6 

From the graphical representation of the asymmetrical second order FRFs (Figures 5 and 6) 

for this investigated numerical example and from equations (17-22) or (29) and (34), it can be 

concluded that: 

� The asymmetrical second order FRFs tend zero for high frequencies which is 

accordance with conclusions of our previous investigations that high frequency 

modulations have no influence on the reactor performance.  
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� For low forcing frequencies the asymmetrical second order FRFs tend to asymptotic 

values:  

����0� ��������  �� �  d� P�d 	 P���d 	 S���B�v r� 

           (38) 

����0� ���OO���  �� �  d��B�v u� 

           (39) 

� ��������  �� is negative in the whole frequency range, so an increase of conversion is 

expected with periodic modulation of the inlet concentration in the whole frequency 

range. This is an expected results, as for our numerical example the parameter 

nC=0.4348, so n=1>nC. From the results of sign analysis given in Table 2, for this case 

negative values of the ��������  �� function are expected in the whole frequency 

range. 

� ���OO���  �� is negative for dimensionless forcing frequencies�� * !��d and positive 

for � � !��d� Consequently, increase of conversion can be expected only with flow 

modulations with frequencies lower than 6.71. These results also are in accordance 

with the results obtained by sign analysis in Section 5.2. From the values of 

parameters uf �  �dp * p� and u� � ���� � dp" >0 and Table 3, it can also be 

concluded that the ���OO���  �� function changes its sign for  � � �O � !��d, and 

that for � * �O � !��d��the FRF ���OO���  �� is negative, and for � � �O � !��d it 

is positive.  

� The highest improvement in both cases of periodical modulation is expected when the 

forcing frequency has a value close to the resonant frequency����� � ����� for which 

asymmetrical second order FRFs have extensive minima. 
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� From the graphical representation of the FRFs, we can expect that larger 

improvements can be achieved with modulation of the inlet concentration than with 

modulation of the flow-rate for the same values of frequency and forcing amplitude. 

�
6.4. Comparison with results obtained by numerical integration  

The DC components of the outlet concentration, calculated approximately by application of 

the NFR method, are compared with the results obtained by numerical integration of the 

model equations (7) and (8), with the model parameters defined in Table 4 and for modulation 

of the inlet concentration of the reactant and flow-rate. The equations were solved by using a 

standard Matlab function ode15s. 

As illustration, in Figure 7 we show some simulation results (the outlet concentration and 

outlet temperature vs. time). This figure corresponds to modulation of the inlet concentration, 

with amplitude A=50% and forcing frequency equal to the resonant frequency (�d=5.53 

rad/min). The starting steady-state values and the mean values during periodic operation, are 

also shown. 

Figure 7 

For the case presented in Figure 7 the outlet concentration of the reactant oscillates between 

0.03 and 0.66 kmol/m3, while the temperature oscillates between 369 and 425 K. The mean 

value of the outlet concentration ��) � p��p���1�����v is lower than the steady state value 

(0.3466 kmol/m3), which makes the periodic operation attractive. It is interesting to notice 

that, although the temperature response is also highly nonlinear, the mean temperature 

Tm=388.8 K is close to the steady state value D� � �����. 

An overview comparing the results of the NFR method with the ones obtained by numerical 

simulations is given in Table 5. The difference between the mean outlet concentration of the 
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reactant, when the selected input is periodically modulated, and the outlet concentration of the 

reactant for steady-state operation: 

+9�) � ��)  ����         (40) 

which indicates the increase of conversion through periodic operation, and its estimate 

calculated based on the NFR method: 

����� # ���� �� ����� ���nn���  ��        (41) 

(where ¡¡ � bb� ??, for modulation of the inlet concentration or flow-rate, respectively), are 

given in Table 5. The results for a number of forcing frequencies, including the resonant one, 

and for different values of forcing amplitudes, in the range from 5 to 50%, are given for both 

modulated inputs.  

Table 5. 

From the results given in Table 5, we can conclude that: 

� The conclusions which have been made by the sign analysis could be confirmed by 

numerical simulations, i.e. increased conversion was achieved in the whole frequency 

range for inlet concentration modulations, and for forcing frequencies � * ���O �
!��d for flow-rate modulations. The sign of the predicted concentration change by the 

NFR method is correct for both inputs and for all forcing frequencies and input 

amplitudes used for simulation. 

� When the input amplitude is kept low (5%), very good agreements between the 

approximate (NFR method) and exact (numerical) values of the concentration change 

are obtained, for both inputs and in the whole frequency range, including the resonant 

frequency. 
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� For higher input amplitude (15%), the agreement between the concentration changes 

predicted by numerical simulation and the NFR method is still very good, for low and 

high frequencies, and somewhat worse at and near the resonant frequency. In this 

frequency range the NFR method overestimates the conversion improvements. 

� Finally, for the highest input amplitude (50%) the results obtained by numerical 

integration and by NFR method are in a relatively good agreement for low and high 

forcing frequencies, but differ even for an order of magnitude, for frequencies at and 

near the resonant one. Again, the NFR method by far overestimates the conversion 

improvements. 

 

 

 

6.5. Explanation of the largest disagreement observed around the resonant frequency 

The explanation of the disagreement between the results of numerical simulations and the 

NFR method, for forcing frequencies near the resonant frequency, is due to the fact that the 

system nonlinearity becomes more pronounced around the resonant frequency (Ritter and 

Douglas, 1970), and the second order approximation, used in our NFR method (equation 4), is 

not good enough. In the case of more pronounced nonlinearity, a considerable amount of 

higher harmonics is expected in the system output. In order to investigate the influence of 

higher order nonlinearities, harmonic analysis of the outlet concentration obtained by 

numerical simulation was performed, by Fourier analysis. 

For illustration, the amplitude spectrum of the outlet concentration, for the case of inlet 

concentration modulation, with a forcing frequency equal the resonant frequency (�� �
����� �¢<)@9 ) and high forcing amplitude ( 
 � �p£ ) (the data presented in Figure 7) is 
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graphically presented in Figure 8. For comparison, the amplitude spectrum obtained with the 

same forcing frequency, but with low amplitude (
 � ��£) is also presented in Figure 9.  

Figure 8 

 

Figure 9 

From Figure 8, it is evident that for the resonant frequency and high forcing amplitude, the 

output exhibits a considerable amount of higher harmonics with large gains, which means that 

the non-linearities of the order higher than two should not be neglected. In the DC component 

which is of our interest, these higher nonlinearities are defined by the FRFs 

�"��� ��  ��  ��� �¤��� �� ��  ��  ��  ��� o (equation (3)), which have been neglected in 

our approximation of the DC component (equation (4)). As a consequence, the disagreement 

between the NFR method and numerical integration is significant. Therefore, in order to 

evaluate the average output concentration for high amplitudes near the resonant frequency 

more accurately, for the system which exhibit resonance, it would be necessary to derive the 

higher order FRFs and take them into account.  

For the resonant frequency and low forcing amplitude (�£�, the harmonics of order higher 

than 3 are negligible small (Figure 9), so in this case equation (4), which takes into account 

only the contribution of second order FRF in the DC component gives a good estimate of the 

concentration change. 

Harmonic analysis of the numerical results obtained for flow-rate modulation give very 

similar results and the same conclusions can be drawn.  

7. Conclusions 

The nonlinear frequency response method is used for evaluation of the possible improvement 

of a non-isothermal CSTR with simple homogeneous n-th order reaction when inlet 
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concentration or flow-rate is periodically modulated. The results presented in this material can 

be summarized as follows: 

� The NFR method is applicable only for stable systems, so, before applying it for 

analysis of periodic operations of a non-isothermal CSTR, it is necessary to analyze 

the stability of the system. 

� Derivation of the asymmetrical second order FRFs for the non-isothermal CSTR is 

much more complicated than for an isothermal CSTR. The derived FRFs are also 

much more complex, as is, consequently, the analysis of their sign. 

� Contrary to the isothermal CSTR, for which the signs of the ��������  ��  and 

���OO���  ��  functions depend only on the reaction order (Nikoli�-Pauni� and 

Petkovska, 2013), the signs of these functions for the non-isothermal CSTR depend on 

the reaction order n, model parameters ������	��
 and St (which depend on the chosen 

steady-state point) and, in some cases, on the forcing frequency �.  

� When the non-isothermal CSTR is oscillatory stable and the system shows resonant 

behaviour, the asymmetrical second order FRFs have extrema around the resonant 

frequency. 

� The numerical example shows that the NFR method predicts correctly the sign of the 

concentration change owing to periodic modulation of the inlet concentration or flow-

rate, for all frequencies, including the resonant one, and in a wide range of amplitudes.  

� Regarding the magnitude of the concentration change owing to periodic modulation of 

the inlet concentration or flow-rate, the NFR method gives very good predictions in all 

cases except for high input amplitudes and forcing frequencies at and around the 

resonant one, where the NFR method highly overestimates the conversion 

improvement through periodic operation. Wide parameter regions could be identified 

which provided advantages of forced periodic operation compared to steady state 
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operation. For the particular example case considered, modulating the inlet 

concentration is more attractive than modulating the feed flow-rate. In the numerical 

example used in this paper, the steady-state used for comparison was not optimized, so 

the results presented here can not be used for drawing conclusions about the optimal 

periodic vs. optimal steady-state operation. 

� The discrepancies between the NFR method and numerical simulation that occurred 

around the resonant frequencies when high input amplitudes were used, were  

explained by the extensive nonlinearity, which was proved by harmonic analysis of 

the numerically simulated output, and cannot properly be approximated by using only 

the second order asymmetrical FRFs. Including the fourth, and possibly higher order 

asymmetrical FRFs in the approximation of the DC component is foreseen as a 

solution for this problem. This issue will be analysed in one of our future publications.  

In the second part of this paper (Nikoli� et al., 2014) we will apply the nonlinear FR method 

for analysis of forced periodic operations of a non-isothermal CSTR with modulation of the 

temperature of the feed stream or the temperature of the cooling/heating fluid. 

Finally, we need to point out that, although in this and our previous applications we used the 

NFR method to predict whether reactant conversion can be increased through periodic 

operation, in principle the method can also be used  to predict possible improvements 

regarding product selectivity. When conversion is of interest, the FRFs that correlate the 

outlet reactant concentration and the input modulation are derived and analysed. If, however, 

the product selectivity is of interest, the FRFs relating the outlet product concentrations to the 

modulated input need to be derived and analysed. Also, although most of our applications 

have been developed for a CSTR, which is a lumped parameter system, the NFR method is, in 

principle, also applicable to distributed parameter systems. This was shown in (Markovi� et 

al., 2008), where we applied the NFR method to analysis of periodic operations of plug-flow 
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and dispersed plug-flow reactors. We need to point out that in the case of distributed 

parameter systems the final FRFs are obtained by solving sets of linear ODEs which are 

obtained after transforming the equations into the frequency domain. This can be much more 

difficult that solving sets of algebraic equations, which are obtained for lumped parameter 

systems. 

Nomenclature  


 input amplitude 


I surface area for heat exchange 


B� stability parameter 

� output amplitude  

�B� stability parameter 

cA concentration of reactant A 

�B heat capacity 

C dimensionless concentration of reactant A 

:� activation energy 

F volumetric flow-rate 

?9 n-th order frequency response function which correlates the outlet temperature with the 

modulated input 

�9 n-th order frequency response function general and which correlates the outlet concentration 

with the modulated input 

1� preexponential factor in Arrenius equation 
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n reaction order 

p roots of characteristic equation 

r reaction rate 

R universal gas constant 

s Laplace complex variable 

St Stanton number 

t time 

T temperature 

U overall heat transfer coefficient 

V volume of the reactor 

x input 

X dimensionless input 

y output 

 

Greek symbols  

P auxiliary parameter 

R auxiliary parameter 

` auxiliary parameter 

T auxiliary parameter 

a dimensionless temperature 
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� damping coefficient 

A density 

c dimensionless time 

� frequency, general and dimensionless 

�< dimensional frequency 

�� resonant frequency 

�9 natural frequency 

+ difference between the time-average and the steady-state concentration 

+C difference between the time-average and the steady-state temperature 

e dimensionless flow-rate 

r auxiliary function 

u auxiliary function 

,FG heat of reaction 

 

Subscripts 

C, CC inlet concentration modulation 

DC non-periodic term 

F, FF flow-rate modulation 

i inlet 

J heating/cooling fluid (jacket) 



33�
�

num numerical 

s steady-state 

I first harmonic 

II second harmonic 

Superscripts 

� mean 

Abbreviations 

CSTR continuous stirred tank reactor 

FR frequency response 

FRF frequency response functions 

NFR nonlinear frequency response 
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APPENDIX 

A. Taylor series expansions of the nonlinear terms in the dimensionless balance 

equations (eqs. 12 and 13) 

34 5678M�klm� � 34 5678M 	 a Q6GCM 34 5678M 	 a� � Q6GCM� 34 5678M 	 g�
� � Q6GCM�� 34 5678M 	 �  

           (A1) 

34 5678M�klm� � 34~�d 	 a` 	 �~�
�  `� a� 	 � �      

           (A2) 

�d 	 b�9 � d 	 Kb 	 f� K�K  d�b� 	 �       

           (A3) 
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�d 	 b�934 5678M�klm� � 34~�d 	 `a 	 Kb 	 K`ba 	 �~�
�  `� a� 	 f� K�K  d�b� 	 � � 

           (A4) 

 

Appendix B. Derivation of the considered frequency response functions 

The main points of the derivation procedure for the first and asymmetrical second order FRFs when 

the inlet concentration or flow-rate are modulated, are given here. In the main body of the manuscript, 

only the final expressions for the second order asymmetrical FRFs which correlate the outlet 

concentration with the modulated inputs are given. The derivation procedure is based on the 

dimensionless material and energy balances, in which the nonlinearities have been replaced by their 

Taylor series expansions (equations (14) and (15)). 

B.1. Derivation of the FRFs ¥¦�§�¨�, ©¦�§�¨�, ¥ª�§§�¨�  ¨� and ©ª�§§�¨�  ¨� 

Step 1: Defining the inlet concentration modulation,  

��@��� � ��@���d 	 
��
��<���,         (B1) 

b@�c� � «�����c� � �� i3¬�­ 	 34¬�­j        (B2) 

Step 2: Representing the outlet concentration and temperature in the form of Volterra series: 

b�c� � �� �f�����3¬�­ 	 �� �f��� ��34¬�­ 	 � 	 � ����� ��������  ��3� 	 �   (B3) 

a�c� � �� ?f�����3¬�­ 	 �� ?f��� ��34¬�­ 	 � 	 � ����� ?�������  ��3� 	 �   (B4) 

Step 3: Substituting the expressions for the inlet concentration, outlet concentration and outlet 

temperature, defined with Eqs. (B2, B3 and B4), into the appropriate model equations (14 and 15).  

Step 4: Collecting the terms with ���� 3¬�­, corresponding to the first order functions and with ����� 3�, 

corresponding to the asymmetrical second order functions, and equating them to zero. The resulting 

equations for the first order FRFs are: 

®��f����� � �d 	 P�  �d 	 KP��f�����  P`?f�����      (B5) 
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®�?f����� � p  �d 	 S� 	 R`�?f�����  KR�f�����      (B6) 

and for the asymmetrical second order FRFs: 

p � p  ��d 	 KP���������  ��  �P`?�������  ��
 P ¯� .`��  `/ ?f�����?f��� �� 	 K`�f�����?f��� �� 	 K`?f������f��� ��
	 K�K  d��f������f��� ��° 

           (B7) 

p � p  ��d 	 S� 	 R`�?�������  ��  �KR��������  ��
 R ±� .`��  `/ ?f�����?f��� �� 	 K`�f�����?f��� �� 	 K`�f��� ��?f�����
	 K�K  d��f������f��� ��² 

            (B8) 

Step 5: After solving equations for the first order FRFs Eq. (B5 and B6) and for asymmetrical second 

order FRFs Eqs. (B7 and B8). The final expressions for these FRFs are:  

� The first order FRF which correlates the outlet concentration with the modulated inlet 

concentration 

�1����� � �1 	 P��1 	 S� 	 R` 	 ®�� �2 	 ®��2 	 R` 	 S� 	 KP� 	 �1 	 KP 	 R` 	 KPS� 	 S���
� � � � � � � � (B9) 

� The first order FRF which correlates the outlet temperature with the modulated inlet 

concentration 

?1����� �  KR�1 	 P� �2 	 ®��2 	 R` 	 S� 	 KP� 	 �1 	 KP 	 R` 	 KPS� 	 S���
        (B10) 
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� The second order FRF which correlates the outlet concentration with the modulated inlet 

concentration 

�2������  �� �  1
2

� P�1 	 S��
1 	 KP 	 R` 	 KPS� 	 S� 

��d 	 P���K�K  d��� 	 s�d 	 S���  �R�`tK�  s�d 	 S� 	 R`��tK�s�d 	 KP 	 R` 	 KPS� 	 S��  ��t� 	 ���� 	 R` 	 S� 	 KP�� � 
        (B11) 

� The second order FRF which correlate the outlet temperature with the modulated inlet 

concentration 

?�������  �� �  d�� R
1	 KP 	 R` 	 KPS� 	 S�� 

��d 	 P���K�K  d��� 	 ³�d 	 S���  �R�`´ K�  µ�d 	 S� 	 R`��¶K�s�d 	 KP 	 R` 	 KPS� 	 S��  ��t� 	 ���� 	 R` 	 S� 	 KP��  

        (B12) 

B.2. Derivation of the FRFs ¥¦�©�¨�, ©¦�©�¨�, ¥ª�©©�¨�  ¨� and ©ª�©©�¨�  ¨� 

Step 1: Defining the flow-rate modulation in cosine way 

 F��� � ?��d 	 
��
��<���     (B13) 

e@�c� � 
��
��c� � �� 3¬�­ 	 �� 34¬�­     (B14) 

Step 2: Representing the outlet concentration and outlet temperature in the form of Volterra 

series 

b�c� � �� �f�O���3¬�­ 	 �� �f�O� ��34¬�­ 	 � 	 � ����� ���OO���  ��3� 	 �  (B15) 

a�c� � �� ?f�O���3¬�­ 	 �� ?f�O� ��34¬�­ 	 � 	 � ����� ?��OO���  ��3� 	 �  (B16) 

Step 3: Substituting the expressions for the flow-rate, outlet concentration and temperature, 

defined with Eqs. (B14-B16), into the appropriate model equations (14 and 15). 
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Step 4: Collecting the terms with ���� 3¬�­, corresponding to the first order functions and with 

����� 3� , corresponding to the asymmetrical second order functions, and equating them to 

zero. The resulting equations, for the first order FRFs are:  

®��f�O��� � P  �d 	 KP��f�O���  P`?f�O���     (B17) 

®�?f�O��� � �R 	 S�  T�  KR�f�O���  �d 	 S� 	 R`�?f�O���   (B18) 

and for the asymmetrical second order FRFs: 

p � p  ��d 	 KP����OO  �P`?��OO���  ��  �f�O���  �f�O� ��
 P .� .`��  `/ ?f�O���?f�O� �� 	 K�K  d��f�O����f�O� ��
	 K`�f�O���?f�O� �� 	 K`�f�O� ��?f�O���/ 

          (B19) 

p � p  �KR���OO���  ��  ��d 	 S� 	 R`�?��OO���  ��  ?f�O���  ?f�O� ��
 R .� .`��  `/ ?f�O���?f�O� �� 	 K�K  d��f�O����f�O� ��
	 K`�f�O���?f�O� �� 	 K`�f�O� ��?f�O���/ 

          (B20) 

Step 5: After solving the equations for the first order FRFs, Eqs. (B17-B18), and for the 

second order asymmetrical FRFs, Eqs. (B19-B20), the following final expressions are 

obtained: 

� The first order FRF which correlates the outlet concentration with the modulated flow-rate 

�f�O��� � P�d 	 S�  `S� 	 `T� 	 ®P� �� 	 ®��� 	 KP 	 S� 	 `R� 	 �d 	 KP 	 R` 	 KPS� 	 S�� 
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          (B21) 

� The first order FRF which correlates the outlet temperature with the modulated flow-rate 

?f�O��� � �R 	 S�  T 	 KP�S�  T�� 	 ®��R 	 S�  T� �� 	 ®��� 	 KP 	 S� 	 `R� 	 �d 	 KP 	 R` 	 KPS� 	 S�� 

          (B22) 

� The asymmetrical second order FRF which correlates the outlet concentration with the 

modulated flow-rate 

���OO���  ��
� d� dKPR`  �d 	 KP��d 	 S� 	 R`� d�� �� 	 d 	 KP 	 R` 	 KPS� 	 S��� 	 ���� 	 KP 	 S� 	 `R��� 

��P�d 	 S� 	 R`��d 	 S�  `S� 	 `T�i �� 	 d 	 R` 	 S� 	 KP�d 	 S��j
	 �P���d 	 S� 	 R`��� 	 S� 	 R` 	 KP�
 �P`iR 	 S�  T 	 KP�S�  T�ji �� 	 d 	 R` 	 S� 	 KP�d 	 S��j
 �P`���R 	 S�  T��� 	 S� 	 `R 	 KP�
	 P`�`  ���d 	 S���R 	 S�  T 	 KP�S�  T���
	 P��`�`  ���d 	 S���R 	 S�  T� 	 K�K  d�Pv�d 	 S���d 	 S�  `S� 	 `T��
	 K�K  d�Pv���d 	 S��
	 �KP�`�d 	 S���d 	 S�  `S� 	 `T�iR 	 S�  T 	 KP�S�  T�j
	 �KP�`���d 	 S���R 	 S�  T�� 

          (B23) 

� The asymmetrical second order FRF which correlates the outlet temperature with the 

modulated flow-rate 

?��OO���  ��
� d� dKPR`  �d 	 KP��d 	 S� 	 R`� d�� �� 	 d 	 KP 	 R` 	 KPS� 	 S��� 	 ���� 	 KP 	 S� 	 `R��� 
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���d 	 KP���R 	 S�  T 	 KP�S�  T��� �� 	 d 	 R` 	 S� 	 KP 	 KPS��
	 ��d 	 KP�i���R 	 S�  T��� 	 KP 	 S� 	 R`�j
 �KPR�d 	 S�  `S� 	 `T�� �� 	 d 	 R` 	 S� 	 KP 	 KPS��
 �KPR���� 	 S� 	 `R 	 KP�
	 R`�`  �� �iR 	 S�  T 	 KP�S�  T�j� 	 ���R 	 S�  T���
	 K�K  d�P�R��d 	 S�  `S� 	 `T�� 	 ���
	 �KPR`��d 	 S�  `S� 	 `T�iR 	 S�  T 	 KP�S�  T�j 	 ���R 	 S�  T��� 

         (B24) 

Figure captions 

Figure 1. Block diagram of a non-isothermal CSTR for single input modulation 

Figure 2. Areas of stability and oscillatority for a non-isothermal CSTR 

Figure 3. Stability parameters Aps (a) and Bps (b) vs. steady-state inlet concentration  

Figure 4. Stability parameters Aps (a) and Bps (b) vs. steady-state flow-rate  

Figure 5. The second order asymmetrical FRF ��������  �� as a function of frequency 
(numerical example) 

Figure 6. The second order asymmetrical FRF ���OO���  �� as a function of frequency 
(numerical example) 

Figure 7. An example of the simulated outlet concentration (up) and temperature (down) for 

modulation of the inlet concentration with amplitude 50% and frequency �< � �����&·'�
��K  

Figure 8. Amplitude spectrum of the outlet concentration when the inlet concentration is 

periodically modulated in co-sinusoidal way, with forcing amplitude 
 � �p£ and forcing 

frequency �< � �����&·'���K 

Figure 9. Amplitude spectrum of the outlet concentration when the inlet concentration is 
periodically modulated in co-sinusoidal way, with forcing amplitude 
 � �£ and forcing 
frequency �< � �����&·'�����

�
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Highlights:�

� Evaluating�single�input�periodic�operations�of�non�isothermal�CSTR�by�NFR�method�

� Analysis�for�the�non�isothermal,�homogeneous,�simple�n�th�order�reaction�in�a�CSTR�

� Derivation�of�asymmetrical�second�order�FR�functions�and�sign�analysis�

� Conditions�for�process�improvement�by�modulating�inlet�concentration�or�flow�rate�

� Comparison�between�results�obtained�by�NFR�method�and�by�numerical�simulations�
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Table 1. Definitions of the dimensionless variables 

Inlet concentration of the reactant
�� =

��� − ���,�

���,�

 
Flow-rate

Φ =
� − ��

��

Outlet concentration of the reactant
� =

�� − ��,�

��,�

 
Inlet temperature

	� =

� − 
�,�


�,�

Temperature in the reactor
	 =


 − 
�


�

 
Temperature of the heating/cooling fluid

	� =

� − 
�,�


�,�

Time
� =




�/��

 
Frequency

� = ��

�

��

 
 

 

Table



Table 2. A summary of the sign analysis for the ��,��(�, −�) function for forced periodic 

operation of a non-isothermal CSTR (attractive are negative signs) 

Condition Frequency range Sign of

��,��(�, −�)

� = 0 ∀� 0

� < �� ��� � < 0 ∀� negative

� < �� ��� 0 < � < 1 ∀� positive

� < �� ��� � = 1 ∀� negative

� < �� ��� � > 1
� < �� positive

� > �� negative

� > �� ��� � < 0
� < �� positive

� > �� negative

� > �� ��� 0 < � < 1

� < �� negative

� > �� positive

� > �� ��� � = 1 ∀� positive

� > �� ��� � > 1 ∀� negative

 

Table



Table 3. A summary of the sign analysis for the ��,��(�, −�) function for forced periodic 

operation of a non-isothermal CSTR (attractive are negative signs) 

Sign of Ω� Sign of Ω� Frequency range
Sign of 

��,��(�, −�)

positive negative
� < �� positive

� > �� negative

negative positive
� < �� negative

� > �� positive

positive positive ∀� negative

negative negative ∀� positive

zero
negative ∀� positive

positive ∀� negative

positive
zero

∀� negative

negative ∀� positive

 

Table



Table 4. Parameters for the numerical example 

Parameter Value

Reaction order, � 1

Volume of the reactor, � [��] 1 

Preexponential factor of the reaction rate constant,�� [1/���] 1 ∗ 10�" 

Activation energy, #� [�$/��%&] 69256 

Heat of reaction, ∆*+ [�$/��%&] −543920 

Heat capacity, -�.77777 [�$/8/��] 4.184 × 10� 

Steady-state flow-rate, �� [��/���] 1 

Steady-state inlet concentration, ���,� [��%&/��] 2 

Steady-state inlet temperature, 
�,� [8] 323 

Steady-state temperature of the coolant, 
�,� [8] 365 

 

Table



Table 5. Concentration change estimated by numerical simulation and by the NFR method 

Dimensionless
forcing 

frequency, �

Inlet concentration modulation
Input amplitude 50% Input amplitude 15% Input amplitude 5%

ΔABC [
��%&

��
]

NFR
��,D� [

EC�F

CG
]

ΔABC [
��%&

��
]

NFR 
��,D� [

EC�F

CG
]

ΔABC [
��%&

��
]

NFR 
��,D� [

EC�F

CG
]

1 -0.0296 -0.0216 -0.0020 -0.0019 -0.00022 -0.00022

2 -0.0313 -0.0263 -0.0026 -0.0024 -0.00027 -0.00027

3 -0.0315 -0.0383 -0.0030 -0.0034 -0.00038 -0.00038

5 -0.0368 -0.2159 -0.0102 -0.0194 -0.0020 -0.0022

5.53 -0.0383 -0.3237 -0.0123 -0.0291 -0.0027 -0.0032

6 -0.0373 -0.2203 -0.0115 -0.0198 -0.0021 -0.0022

7 -0.0289 -0.0504 -0.0043 -0.0045 -0.0005 -0.0005

10 -0.0041 -0.0041 -0.0003 -0.0004 -0.00004 -0.00002

Dimensionless
forcing

frequency, �

Flow-rate modulation

Input amplitude 50% Input amplitude 15% Input amplitude 5%

1 -0.0178 -0.0164 -0.0015 -0.0015 -0.0002 -0.0002

2 -0.0193 -0.0186 -0.0017 -0.0017 -0.0002 -0.0002

3 -0.0148 -0.0238 -0.0020 -0.0021 -0.0002 -0.0002

5 -0.0154 -0.0747 -0.0050 -0.0067 -0.0007 -0.0007

5.53 -0.0099 -0.0808 -0.0043 -0.0073 -0.0007 -0.0008

6 -0.0041 -0.0344 -0.0021 -0.0031 -0.0003 -0.0003

7 0.0043 0.0035 0.0003 0.0003 0.00004 0.00004

10 0.0039 0.0039 0.00036 0.00035 0.00004 0.00004

 

Table




