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Graphical Abstract 

 

 

Highlights 

 Bacillus licheniformis 9945a laccase is overexpressed in E. coli with yield 50 mg/L. 

 Temperature optimum of laccase is 90⁰C and pH optimum is 7.0.  

 Enzyme is thermostable with a melting temperature of 79⁰C at pH 7.0. 

 Presence of organic solvents reduces melting temperature but activity remains impaired. 

 Lignin model compounds are dimerized after one electron oxidation of phenolic group. 

 

Abstract 

Bacterial laccases have proven advantages over fungal and plant counterparts in terms of 

wider pH optimum, higher stability and broader biocatalytic scope. In this work, Bacillus 

licheniformis ATCC 9945a laccase is produced heterologously in Escherichia coli. Produced 

laccase exhibits remarkably high temperature optimum at 90⁰C and possess significant 

thermostability and resistance to inactivation by organic solvents. Laccase has an apparent 

melting temperature of 79⁰C at pH 7.0 and above 70⁰C in range of pH 5.0-8.0, while having 

half-life of 50 min at 70⁰C. Presence of 10% organic solvents such as acetonitrile, 

dimethylformamide, dimethylsulfoxide or methanol reduces melting temperature to 45-52ᴼC but 

activity remains practically unimpaired. With 50% of acetonitrile and methanol laccase retained 
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~40% of initial activity. EDTA and 300 mM sodium-chloride have positive effect on activity. 

Enzyme is active on syringaldazine, ABTS, phenols, amines, naphthol, lignin and lignin model 

compounds and mediates C-C bond formation via oxidative coupling after one electron oxidation 

of phenolic group. Successful polymerization of 2-naphthol was achieved with 77% conversion 

of 250 mg/L 2-naphtol in only 15 min which may further expand substrate scope of this enzyme 

towards polymer production and/or xenobiotics removal for environmental applications.  

 

Keywords: Laccase, Bacillus licheniformis, oxidation, thermostable enzyme, lignin. 

 

1. Introduction 

Laccases (benzenediol/oxygen oxidoreductases; EC 1.10.3.2) belong to the class of 

multi-copper oxidases able to oxidize a wide range of substrates via four electron reduction of 

molecular oxygen to water.  Substrate scope of laccases includes phenols and polyphenols, 

nonphenolic substrates such as aromatic and biogenic amines, arylamines, anilines and some 

cyanide complexes of metals [1,2]. First and the most famous bacterial laccase is thermostable 

CotA originating from spore coat of Bacillus subtilis [3]. CotA performed more efficient 

degradation of organochlorine insecticides, lindane and endosulfan than fungal laccase and has 

shown potential for bioremediation of xenobiotics [4]. Recent publications demonstrate high 

interest in laccases, whether chemical modification for pH and thermostabilization is investigated 

[5], synthesis of fine chemicals and the modification of biopolymers [6,7] or completely new 

applications such as first enzymatic Achmatowicz reaction [8].  

Our knowledge on bacterial laccases is still scarce and new enzymes have to be 

characterized in order to expand available biocatalysts toolbox and to broaden knowledge about 

them [9]. In this work, Bacillus licheniformis ATCC 9945a laccase (BliLacc) is overexpressed 

and purified. Biochemical characterization indicated that BliLacc is stable in wide range of 

conditions and may fit in well among biocatalysts used in organic chemistry. Ability of C-C 

coupling of phenolic compounds is demonstrated together with possibility of lignin modification 

and polymer formation from simple building blocks thus suggesting this enzyme as a promising 

tool for synthetic chemistry. 
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2. Experimental 

2.1. Chemicals 

All reagents and solvents were purchased from Merck (Darmstadt, Germany) and Sigma-

Aldrich (St. Louis, MO, USA). Phusion master mix, GeneJet plasmid miniprep kit and GeneJet 

gel extraction kit were purchased from Thermo Scientific. 

 

2.2. Strains, culture conditions and plasmids 

Bacillus licheniformis (ATCC® 9945a™) was used in this study as a source organism of 

the Lacc gene. E. coli TOP 10 was used for general cloning purposes and as the expression host. 

All strains were grown in Luria–Bertani (LB) broth at 37°C, while for expression of recombinant 

laccase terrific broth (TB) was used.  Plasmid pBadNdeIHis was used for the expression of the 

gene. pBadNdeIHis is a pBAD/Myc-HisA-derived expression vector (Invitrogen) in which the 

NdeI site is removed and the NcoI site is replaced by NdeI. 

A set of two oligonucleotide primers was designed based on the putative outer spore coat 

(CotA) gene sequence (CP005965.1|:747254-748795). The PCR fragment was amplified using 

primers GGG AAC CAT ATG AAA CTT GAA AAA TT and ACT GAA TTC TTG ATG ACG 

AAT ATC CG for cloning between NdeI and EcoRI to give pBAD-LaccHis construct which 

enables use of affinity purification on Ni-Sepharose. Restriction sites in primers are underlined.  

 

2.3. Expression of laccase: Cell cultivation and fractionation.  

Host cells carrying pBAD-LaccHis plasmid were grown overnight at 37°C in LB medium 

containing ampicillin (100 μg/mL). The culture was diluted (1%) into fresh TB medium 

containing ampicillin (100 μg/mL). Expression of BliLacc was induced with 0.02% arabinose 

and carried out at 17°C for 48 h. Copper-chloride (final concentration 2 mM) was added in 

extracting buffer (50 mM KPi pH 7.8, 300 mM NaCl, 2 mM CuCl2, 0.5% Triton X-100). Cell 

free extract was incubated 1 h at 50°C and clarified by centrifugation at 16000 rpm for 1 h. Clear 

supernatant was loaded on a Ni2+-Sepharose HP equilibrated with 50 mM KPi buffer pH 7.8 with 

0.3 M NaCl and incubated overnight at 4°C using nutating shaker. Non-specifically bound 

proteins were washed away stepwise with 2 column volumes of 25 mM imidazole in starting 

buffer followed by elution with 250 mM imidazole in the same buffer. Collected fractions were 
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analyzed by activity measurement and reducing SDS-PAGE. Pure fractions were concentrated 

using an Amicon stirring cell equipped with a 10 kDa cut-off membrane.  

 

2.4. Biochemical characterization of recombinant laccase 

For determination of Michaeles-Menten kinetic parameters the oxidation of SGZ (ε525 = 

65,000 M-1cm-1) was tested using 0.15-20 μM substrate at 25°C in 100 mM TrisHCl pH 7.0 (Lu 

et al., 2012).  pH optimum experiments were carried out as described above using set of 100 mM 

buffers (Na-acetate pH 3-5, MES pH 6, TrisHCl 7-8, glycine/NaOH pH 9-10). Temperature 

optimum was determined by preincubation of 1 mL 1 mM ABTS in 100 mM Na-acetate buffer 

pH 4.0 in dry bath at different temperatures. BliLacc was added and reaction stopped after 1 min 

by addition of trichloroacetic acid (TCA) [10]. 

ProtParam tool at ExPASy server (URL: http://web.expasy.org/protparam/) was used to 

calculate extinction coefficient for BliLacc of 71530 M-1 cm-1 and an extinction coefficient at 610 

nm of 4400 M-1 cm-1 for Type 1 copper was used for the calculations of copper content [11]. 

The effects of inhibitors as well as organic solvents acetonitrile (AcN), 

dimethylformamide (DMF), dimethylsulfoxide (DMSO) or methanol (MeOH) on BliLacc 

activity were studied as described before with SGZ as substrate (Lu et al., 2012). BliLacc and 

inhibitors or organic solvents were incubated for 5 min at room temperature prior to addition of 

SGZ and determination of residual activity. Additionally, BliLacc was incubated with organic 

solvents for 5, 10, 20 and 30 min prior to activity measurement to confirm enzyme’s stability 

upon prolonged incubation with cosolvent. 

Screening of substrates was carried out at room temperature at pH 7 using 1 mM 

substrates and their characteristic wavelength maxima and extinction coefficients as indicated in 

Table 1.  Stock solutions of substrates were made in DMSO and final concentration of DMSO in 

reaction mixture was kept under 5%. Oxidation of 2-naphthol was tested at different pH with 

0.44 µM BliLacc and 250 mg/L 2-naphthol in a 0.5 mL reactions in 100 mM buffer (Na-acetate 

pH 3-5, MES pH 6, TrisHCl 7-8, glycine/NaOH pH 9-10).  Reaction was incubated at 60°C for 

15 min with shaking followed by stopping reaction at 100°C for 5 min. Resulting polymer was 

removed by centrifugation and supernatant analyzed by HPLC (vide infra) to quantify substrate 

depletion. Oxidation of ibuprofen, thioanisole and Cbz-ethanolamine was tested in 100 mM 

http://web.expasy.org/protparam/
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TrisHCl pH 7.0 at 60 °C for 1 h and analysed by HPLC (vide infra). Controls were included in 

all experiments without enzyme and with enzyme inactivated by boiling at 100 °C for 10 min.  

 

2.5. Thermal stability assays 

Thermal stability was determined by measuring residual activity upon incubating 50 μl 

aliquots of purified BliLacc (4.4 μM) at 60⁰C and 70⁰C. Samples were withdrawn at specific 

time points, placed on ice and enzyme activity was determined spectrophotometrically using 1 

mM ABTS in 100 mM Na-acetate buffer pH 4.0 as described above.   

The ThermoFluor method was used to determine the apparent melting points of the 

laccase using an enzyme concentration of 1.0 mg/ml. For testing thermal stability of BliLacc in 

different pH 100 mM buffers were used (Na-acetate pH 4.0-5.0, MES pH 6.0, TrisHCl pH 7.0-

8.0). Thermal stability in presence of 10% organic solvents was performed in 100 mM TrisHCl 

buffer pH 7.0. This method is based on the fluorescence increase upon binding of SYPRO 

Orange to hydrophobic protein surfaces that become exposed upon thermal protein unfolding or 

multimer dissociation [12]. The fluorescence of the Sypro Orange dye was monitored using a 

RT-PCR machine (CFX-Touch, Bio-Rad). The temperature was increased with 0.5⁰C per step, 

starting at 25⁰C and ending at 99⁰C, using a 10 s holding time at each step. The temperature at 

the maximum of the first derivative of the observed fluorescence was taken as the apparent 

melting temperature.  

 

2.6. Ligninolytic acitivity 

Activity on 5 mM guaiacylglyerol-β-guaiacyl ether in 100 mM TrisHCl buffer pH 7.0 at 

65°C was followed by measuring substrate depletion using an HPLC. Thermo Dionex Ultimate 

3000 HPLC system was fitted with a Grace Altima HP C18 column (2.1 x 100 mm, 3 µm 

particles). Mobile phases consisted of 0.1% formic acid in water as component A and acetonitrile 

as component B. Gradient elution: 15% B for 3 min, 15 - 95% B in 13 min, 95% B for 5 min. 

The compounds were eluted at flow rate of 0.5 ml min-1, and column was set at 30 °C. Injection 

volume was 10 μL. Detector was set at 254 nm and 280 nm.  Mass spectrometry product analysis 

was performed on Zorbax Eclipse XDB C18 column using Agilent 1100 series HPLC equipped 

with a diode array detector and an Agilent 6520 ESI-MS-TOF.  
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3. Results  

3.1. Production and purification of recombinant laccase  

Full genome sequence of Bacillus licheniformis 9945a has been available as B. 

licheniformis strains are widely used in biotechnology for enzyme and antibiotics production 

[13]. This strain is known for thermostable amylase and for production of gamma-poly(glutamic 

acid) [14-16]. Genome mining identified one gene for outer spore coat laccase (CotA) 

(GenBank: AGN35164.1). Identified putative laccase has 66% identity in protein sequence with 

well known spore laccase originating from Bacillus subtilis (PDB: 1GSK_A) [3]. Different 

conditions for cultivation were attempted, namely expression in LB and TB media at 17 ᴼC, 24 

ᴼC, 30 ᴼC and 37 ᴼC, and with varying inducer concentration. Additionally, growth in 

microaerobic conditions in presence of 0.2 mM and 2 mM copper was tested. Best result in terms 

of yield and activity of enzyme was obtained using TB medium and expressing enzyme at 17 ᴼC 

for 48 h. 50 mg of purified BliLacc was obtained from 1 L of TB medium cultured in flasks (Fig. 

1a).   After purification and concentration by ultrafiltration solution of 220 µM BliLacc was 

obtained with intensive blue color. Enzyme remained soluble under these conditions. UV Vis 

spectra of 100 µM BliLacc shows characteristic peak at 606 nm that match blue color of Type 1 

copper and shoulder at 330 nm for Type 3 copper (Fig. 1b). Using extinction coefficient known 

for several laccases we calculated concentration of 97.5 µM of copper Type 1 for 100 µM 

BliLacc determined by protein concentration measurement (Fig. 1b). This implies that BliLacc is 

expressed as fully loaded laccase under conditions described above.   

3.2. Biochemical characterization of recombinant laccase 

pH optimum of BliLacc with ABTS is around pH 3 while for SGZ it reaches its 

maximum at pH 7.0. Michaelis-Menten kinetics was determined at this pH and shown low Km of 

only 4.06 ± 0.49 µM and kcat of 1.99 ± 0.09 s-1. Activity towards DMP was lower than towards 

both ABTS and SGZ and showed somewhat flat pH optimum line with preference for lower pH 

values (Fig. 2a). Temperature optimum reaches the peak at 90ᴼC and decrease slightly at 100ᴼC 

(Fig. 2b).   

The apparent melting temperature (Tm app) for BliLacc was found to be 79 ᴼC at pH 7.0 

and remains higher than 70ᴼC in the range of pH 5.0-8.0 (Fig. 3a).  Effect of organic solvents on 

the Tm app of BliLacc showed a trend of decreased melting temperature for 20-30 ᴼC as compared 

to enzyme without organic solvents present. However, no significant discrimination can be made 
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among tested solvents.      Tm app is lowered from 79 ᴼC to 45-52 ᴼC, where BliLacc has lowest 

stability in presence of AcN and highest in presence of DMSO at pH 7.0 (Fig. 3b). Additionally, 

activity measurements were performed to check how activity is affected by organic solvents (Fig. 

3c). Although apparent Tm app is lowered in presence of 10% organic solvents, activity of BliLacc 

remained practically unaffected. DMSO and AcN have no influence on activity, DMF reduced it 

to 78% compared to control sample whereas in the presence of 10% MeOH enzyme exhibited 

120% activity towards SGZ (Fig. 3c). In the presence of 50% organic solvents BliLacc retained 

significant percentage of initial activity: ~40% in case of AcN and MeOH whereas most of the 

activity is lost in the case of DMSO and DMF (Fig. 3c). Enzyme did not show different activity 

if incubated with cosolvents in range of 5-30 min. 

High values for apparent melting temperature are good indication of the thermal stability 

of BliLacc. Upon incubation for 30 min at 60⁰C and 70⁰C, the enzyme retains 94% and 70% of 

its original activity, respectively. Half-life of BliLacc at 60⁰C is nearly 100 min whereas at 70⁰C 

it is 59 min (Fig. 4). 

Thiol compounds such as L-cystein and dithiotreitol (DTT) completely inactivated 

laccase already at 1 mM concentration, whereas in the presence of 1 mM sodium-azide BliLacc 

showed 40% activity and 9% when 10 mM azide was used (Table 1). EDTA in a range of 

concentration 1-10 mM activated BliLacc to ~125%. Laccase retained 100% activity in the 

presence of both 100 mM and 300 mM NaCl.  

To explore substrate scope of BliLacc, a range of differently substituted phenolic 

substrates was tested. Table 1 gives an overview of substrate specificity of BliLacc and showed 

that enzyme is prevalently active on classical phenolic and amine substrates such as SGZ, o-

dianisidine, ABTS and 2,6-DMP exhibiting similar turnover numbers (Table 2). However, 

BliLacc is also active on other substrates albeit with lower efficacy with the exception of p-

phenylenediamine which appeared to be the most convenient substrate next to 2-naphthol. 

Removal of 2-naphthol was tested at concentration 250 mg/L in buffers with a pH range 3-8. 

Highest activity was shown to be at pH 8 where conversion of 77.35% was achieved via 

insoluble polymer formation after 15 min incubation at 60 °C. Ibuprofen, thioanisole and Cbz-

ethanolamine were not susceptible to oxidation by this enzyme (data not shown).  
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3.3. Lignin model dimer oxidation  

 Measuring conversion of 5 mM guaiacylglyerol-β-guaiacyl ether with 1.1 µM BliLacc 

showed 70.6% substrate conversion in 30 min and 92.5% in one hour at pH 7.0 and 65°C. After 

90 min no substrate could be detected. However, observed products are not phenolic monomers 

meaning that the enzyme does not catalyze the cleavage of beta-ether bond. Using LC-MS two 

major peaks have been identified. Measured masses of products are M- 638.23688 Da and M- 

956.34316 Da and calculated molecular formula of C34H38O12 and C51H56O18 which corresponds 

to the dimer and trimer of starting compound, respectively (Supporting information, Fig. S2 and 

Fig. S3). The dimer peak is predominant during the first hour of reaction while upon the longer 

incubation time the trimer peak increase and the orange-brown polymeric product precipitates.  

 

4. Discussion 

Bacterial laccases are in the focus of research in the past decade due to their increased 

stability as compared to fungal laccases [17-19]. However, production of bacterial laccases is 

problematic due to the formation of inclusion bodies, low expression levels and low copper 

loading. Addition of copper to the growth medium is possible but limited by copper toxicity to 

host organism. Different expression conditions for several laccases from B. subtilis, Bacillus 

pumilus, Bacillus clausii and other bacterial species demonstrate that a switch to oxygen-limited 

growth conditions after induction increased volumetric activity considerably [6,20]. In some 

cases, copper content of the recombinant laccase can be increased if the enzyme is coexpressed 

with copper chaperone CopZ [21]. In vitro refolding by dilution method was used after 

solubilization of inclusion bodies of laccase in 8M urea with 4 mM β-mercaptoethanol [22]. 

Introducing single mutations of Asp500 at C terminal loop that interacts with T1 copper was 

proven to increase expression level up to 3 fold [23]. Rational design was employed too to 

increase solubility and stability of bacterial laccases, where His-tag and residues 323-332 had to 

be deleted [17]. Extracellular expression has been used successfully for heterologous expression 

of Bacillus sp. enzymes in E. coli [24], so it might offer a solution for laccase expression too. In 

this work however, it was necessary to use lower temperature for expression but addition of 

copper decreased of active enzyme. Hence, different approach was used to increase yield of 

active BliLacc. Additon of 0.5% Triton X-100 to the extraction buffer gave high content of the 

extracted proteins. Copper addition during sonication and subsequent incubation at 50 ᴼC for 1h 
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is proposed to allow copper loading into the apo-enzyme. High temperature is hypothesized to 

enable misfolded protein to bind copper and refold properly and in this case thermostability of 

bacterial laccase is very useful. From spectroscopic analysis it seems that purified laccase is fully 

copper-loaded with respect of Type 1 and Type 3 copper (Fig. 1b). Published extinction 

coefficient for Type 1 copper are in range of 4400-5700 M-1cm-1 [11,25]. For BliLacc extinction 

coefficient of laccase from Streptomyces coelicolor was used since it is a gram-positive 

bacterium as B. licheniformis, source of gene encoding BliLacc. Considering known obstacles in 

the production of these enzymes, obtained yield was still quite remarkable and this method is 

rather simple as first line of screening expression conditions compared to previously published 

workflows to obtain functional bacterial laccase.  

The kcat for SGZ is comparable with those described before for other Bacillus laccases 

such as 3.7 ± 0.1 s−1 for CotA from B. subtilis [3]. Inactivation of bacterial and fungal laccases 

by thiols has been described earlier [18,26-28]. Laccases resistant to inhibition by high chloride 

concentration have advantage over fungal laccases for treatment of textile wastewater since 

fungal laccases are easily inhibited already by 100 mM chloride ions [29,30].  From process 

development point of view resistance to the high salt may serve to increase the polarity of 

solution and facilitate better separation of product in two phase systems where end product is 

more hydrophobic [31].  

Studies of a threshold concentration of organic solvent required to initiate rapid enzyme 

inactivation have shown that enzymes which can retain the activity in the high organic solvent 

concentration are very rare [32]. Recent example of Rhus vernicifera laccase losing more than 

85% of initial activity in 20% ethanol and methanol may further emphasize significance of 

BliLacc resistance to organic solvents inactivation [33].  

New conducting materials are being screened for the electronic industry and laccase  

mediated polymerization of the natural phenols such as gallic acid is proof of concept in this 

field of application [34].  BliLacc shows ability to produce water insoluble polymers from gallic 

acid, p-phenylenediamine, diaminobenzidine and 2-naphthol. Remarkable coversion of 77% of 

2-naphthol at 250 mg/L is opening up the possibility for a clean method for wastewater treatment 

as naphthol is removed as insoluble polymer and metabolites are not present in the water. 

Formation of insoluble polymers upon oxidation of phenolics has been shown before. BliLacc 
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may be useful for polymers synthesis, i.e. oxidized naphthol may be coupled via SN2 reaction as 

demonstrated for some catechols [35].  

Various oxidases are being tested for the action on lignin aiming at deriving added value 

chemicals [36,37].  Heterogeneity of lignin is a major obstacle for detailed study of the enzyme 

activity and model compounds are used instead. Guaiacylglyerol-β-guaiacyl ether is a phenolic 

model compound that contains ether bonds which constitutes up to 50% of total bonds in lignin. 

BliLacc seems not to act on beta ether linkage in model compound but instead on phenolic 

group. Products are formed via oxidative coupling after one electron oxidation of phenolic group 

as shown also for coupling of cinnamic acid derivatives for other laccases  and peroxidases 

[38,39]. Measured mass of the product corresponds well with the mass of predicted dimer 

(Supporting information, Fig. S2). Additional peak of small intensity was eluted after the main 

product peak and showed same mass (Supporting information, Fig. S3.1). Most likely it is a 

structural isomer due to the coupling at different position as described recently for laccase 

application for the synthesis of pinoresinol starting from eugenol [39].  

Good starting point, meaning relatively stable enzyme with good expression yield is 

necessary in order to continue towards the rational, semi-rational and directed evolution 

approaches to ultimately convert laccases into high value-added biocatalysts [40]. BliLacc fulfils 

these requirements and may be tailored into a more superb enzyme for specific applications. 

 

Conflict of interest 

The authors declare that they have no conflict of interest. 

 

Acknowledgements 

This work was supported by the Serbian Ministry of Education, Science and 

Technological Development, project grant number 172048.  

 

References 

[1] P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle, G. Sannia, Laccases: a never-

ending story, Cellular and Molecular Life Sciences. 67 (2010) 369-385. 



12 
 

[2] S. Callejón, R. Sendra, S. Ferrer, I. Pardo, Cloning and characterization of a new laccase 

from Lactobacillus plantarum J16 CECT 8944 catalyzing biogenic amines degradation, Appl. 

Microbiol. Biotechnol. (2015) 1-12. 

[3] L.O. Martins, C.M. Soares, M.M. Pereira, M. Teixeira, T. Costa, G.H. Jones, A.O. 

Henriques, Molecular and biochemical characterization of a highly stable bacterial laccase that 

occurs as a structural component of the Bacillus subtilis endospore coat, J. Biol. Chem. 277 

(2002) 18849-18859. 

[4] A. Ulcnik, I. Kralj Cigic, F. Pohleven, Degradation of lindane and endosulfan by fungi, 

fungal and bacterial laccases, World J. Microbiol. Biotechnol. 29 (2013) 2239-2247. 

[5] Y. Liu, X. Hua, Degradation of acenaphthylene and anthracene by chemically modified 

laccase from Trametes versicolor, RSC Adv. 4 (2014) 31120-31122. 

[6] J. Ihssen, R. Reiss, R. Luchsinger, L. Thony-Meyer, M. Richter, Biochemical properties and 

yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli, Sci. 

Rep. 5 (2015) 10465. 

[7] F. Hollmann, I.W.C.E. Arends, K. Buehler, A. Schallmey, B. Buhler, Enzyme-mediated 

oxidations for the chemist, Green Chem. 13 (2011) 226-265. 

[8] C. Asta, D. Schmidt, J. Conrad, B. Forster-Fromme, T. Tolasch, U. Beifuss, The first 

enzymatic Achmatowicz reaction: selective laccase-catalyzed synthesis of 6-hydroxy-(2H)-

pyran-3(6H)-ones and (2H)-pyran-2,5(6H)-diones, RSC Adv. 3 (2013) 19259-19263. 

[9] E. Ricklefs, N. Winkler, K. Koschorreck, V.B. Urlacher, Expanding the laccase-toolbox: a 

laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity, J. 

Biotechnol. 191 (2014) 46-53. 

[10] M. Nagai, M. Kawata, H. Watanabe, M. Ogawa, K. Saito, T. Takesawa, K. Kanda, T. Sato, 

Important role of fungal intracellular laccase for melanin synthesis: purification and 

characterization of an intracellular laccase from Lentinula edodes fruit bodies, Microbiology. 

149 (2003) 2455-2462. 

[11] M.C. Machczynski, E. Vijgenboom, B. Samyn, G.W. Canters, Characterization of SLAC: A 

small laccase from Streptomyces coelicolor with unprecedented activity, Protein Science : A 

Publication of the Protein Society. 13 (2004) 2388-2397. 



13 
 

[12] U.B. Ericsson, B.M. Hallberg, G.T. Detitta, N. Dekker, P. Nordlund, Thermofluor-based 

high-throughput stability optimization of proteins for structural studies, Anal. Biochem. 357 

(2006) 289-298. 

[13] M. Rachinger, S. Volland, F. Meinhardt, R. Daniel, H. Liesegang, First Insights into the 

Completely Annotated Genome Sequence of Bacillus licheniformis Strain 9945A, Genome 

Announc. 1 (2013) 10.1128/genomeA.00525-13. 

[14] N. Božić, J. Ruiz, J. López-Santín, Z. Vujčić, Production and properties of the highly 

efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a, Biochem. 

Eng. J. 53 (2011) 203-209. 

[15] G. Kedia, D. Hill, R. Hill, I. Radecka, Production of poly-gamma-glutamic acid by Bacillus 

subtilis and Bacillus licheniformis with different growth media, J. Nanosci Nanotechnol. 10 

(2010) 5926-5934. 

[16] Y.H. Ko, R.A. Gross, Effects of glucose and glycerol on gamma-poly(glutamic acid) 

formation by Bacillus licheniformis ATCC 9945a, Biotechnol. Bioeng. 57 (1998) 430-437. 

[17] Z. Fang, P. Zhou, F. Chang, Q. Yin, W. Fang, J. Yuan, X. Zhang, Y. Xiao, Structure-based 

rational design to enhance the solubility and thermostability of a bacterial laccase Lac15, PLoS 

One. 9 (2014) e102423. 

[18] N. Loncar, N. Bozic, J. Lopez-Santin, Z. Vujcic, Bacillus amyloliquefaciens laccase--from 

soil bacteria to recombinant enzyme for wastewater decolorization, Bioresour. Technol. 147 

(2013) 177-183. 

[19] L. Lu, T.N. Wang, T.F. Xu, J.Y. Wang, C.L. Wang, M. Zhao, Cloning and expression of 

thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization, 

Bioresour. Technol. 134 (2013) 81-86. 

[20] P. Durao, Z. Chen, A.T. Fernandes, P. Hildebrandt, D.H. Murgida, S. Todorovic, M.M. 

Pereira, E.P. Melo, L.O. Martins, Copper incorporation into recombinant CotA laccase from 

Bacillus subtilis: characterization of fully copper loaded enzymes, J. Biol. Inorg. Chem. 13 

(2008) 183-193. 

[21] M. Gunne, D. Al-Sultani, V.B. Urlacher, Enhancement of copper content and specific 

activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper 

chaperone in E. coli, J. Biotechnol. 168 (2013) 252-255. 



14 
 

[22] N. Mollania, K. Khajeh, B. Ranjbar, F. Rashno, N. Akbari, M. Fathi-Roudsari, An efficient 

in vitro refolding of recombinant bacterial laccase in Escherichia coli, Enzyme Microb. Technol. 

52 (2013) 325-330. 

[23] N. Nasoohi, K. Khajeh, M. Mohammadian, B. Ranjbar, Enhancement of catalysis and 

functional expression of a bacterial laccase by single amino acid replacement, Int. J. Biol. 

Macromol. 60 (2013) 56-61. 

[24] N. Božić, J. Puertas, N. Lončar, C.S. Duran, J. López-Santín, Z. Vujčić, The DsbA signal 

peptide-mediated secretion of a highly efficient raw-starch-digesting, recombinant α-amylase 

from Bacillus licheniformis ATCC 9945a, Process Biochemistry. 48 (2013) 438-442. 

[25] B. Reinhammar, Y. Oda, Spectroscopic and catalytic properties of rhus vernicifera laccase 

depleted in type 2 copper, J. Inorg. Biochem. 11 (1979) 115-127. 

[26] A.A. Telke, G.S. Ghodake, D.C. Kalyani, R.S. Dhanve, S.P. Govindwar, Biochemical 

characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR, 

Bioresour. Technol. 102 (2011) 1752-1756. 

[27] L. Lu, M. Zhao, T.N. Wang, L.Y. Zhao, M.H. Du, T.L. Li, D.B. Li, Characterization and 

dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from 

Bacillus licheniformis LS04, Bioresour. Technol. 115 (2012) 35-40. 

[28] A.A. Telke, D.C. Kalyani, U.U. Jadhav, G.K. Parshetti, S.P. Govindwar, Purification and 

characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for 

the removal of bisphenol A, J Molec Catal B. 61 (2009) 252-260.  

[29] N. Jimenez-Juarez, R. Roman-Miranda, A. Baeza, A. Sánchez-Amat, R. Vazquez-Duhalt, B. 

Valderrama, Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas 

mediterranea, J. Biotechnol. 117 (2005) 73-82. 

[30] N. Lončar, N. Gligorijević, N. Božić, Z. Vujčić, Congo red degrading laccases from 

Bacillus amyloliquefaciens strains isolated from salt spring in Serbia, Int. Biodeterior. 

Biodegrad. 91 (2014) 18-23. 

[31] P. Tufvesson, J. Lima-Ramos, N.A. Haque, K.V. Gernaey, J.M. Woodley, Advances in the 

Process Development of Biocatalytic Processes, Org. Process Res. Dev. 17 (2013) 1233-1238. 

[32] V.V. Mozhaev, Y.L. Khmelnitsky, M.V. Sergeeva, A.B. Belova, N.L. Klyachko, A.V. 

LevashoV, K. Martinek, Catalytic activity and denaturation of enzymes in water/organic 

cosolvent mixtures, European Journal of Biochemistry. 184 (1989) 597-602. 



15 
 

[33] Y. Wan, R. Lu, L. Xiao, Y. Du, T. Miyakoshi, C. Chen, C.J. Knill, J.F. Kennedy, Effects of 

organic solvents on the activity of free and immobilised laccase from Rhus vernicifera, Int. J. 

Biol. Macromol. 47 (2010) 488-495. 

[34] J. López, J.M. Hernández-Alcántara, P. Roquero, C. Montiel, K. Shirai, M. Gimeno, E. 

Bárzana, Trametes versicolor laccase oxidation of gallic acid toward a polyconjugated 

semiconducting material, J Molec Catal B. 97 (2013) 100-105. 

[35] H.T. Abdel-Mohsen, J. Conrad, U. Beifuss, Laccase-catalyzed synthesis of catechol 

thioethers by reaction of catechols with thiols using air as an oxidant, Green Chem. 16 (2014) 90. 

[36] T.D. Bugg, R. Rahmanpour, Enzymatic conversion of lignin into renewable chemicals, 

Curr. Opin. Chem. Biol. 29 (2015) 10-17. 

[37] R. Chandra, P. Chowdhary, Properties of bacterial laccases and their application in 

bioremediation of industrial wastes, Environ. Sci. Process. Impacts. 17 (2015) 326-342. 

[38] R.T. Nishimura, C.H. Giammanco, D.A. Vosburg, Green, Enzymatic Syntheses of 

Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry 

Laboratory, J. Chem. Educ. 87 (2010) 526-527. 

[39] E. Ricklefs, M. Girhard, K. Koschorreck, M.S. Smit, V.B. Urlacher, Two-Step One-Pot 

Synthesis of Pinoresinol from Eugenol in an Enzymatic Cascade, ChemCatChem. 7 (2015) 1857-

1864. 

[40] D.M. Mate, M. Alcalde, Laccase engineering: from rational design to directed evolution, 

Biotechnol. Adv. 33 (2015) 25-40. 

 

 

 

FIGURE CAPTIONS 

Fig. 1. (a) SDS PAGE analysis. Lane 1: molecular markers molecular weights (kDa); lane 2: 

molecular markers; lane 3: purified BliLacc. (b) UV Vis spectrum of 100 µM BliLacc. Arrows 

indicate shoulder at 330 nm that corresponds to Type 3 copper and peak at 606 nm that 

corresponds to Type 1 copper.  

Fig. 2. (a) Effect of pH on activity of BliLacc towards syringaldazine, ABTS and 2,6-

dimethoxyphenol. (b) Effect of temperature on activity of BliLacc towards ABTS as measured 

by stop assay. 
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Fig. 3. (a) Effect of pH on apparent melting temperature of BliLacc. (b) Effect of 10% solvents 

on apparent melting temperature of BliLacc at pH 7 and (c) effect of 10% and 50% solvents on 

BliLacc activity towards SGZ.  

Fig. 4. Thermal stability of BliLacc at 60ᴼC and 70ᴼC. 
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Fig. 4 

 

 

 

 

Table 1 Effect of inhibitors on BliLacc activity 

  Concentration (mM) kobs (s-1) Relative activity (%) 

control   1.65 ± 0.05 100 

NaN3       10 0.15 ± 0.01 9 

                   1 0.68 ± 0.01 40 

EDTA 10 2.11 ± 0.04 124 

 
1 2.17 ± 0.05 127 

NaCl 100 1.78 ± 0.01 105 

 
300 1.77 ± 0.09 104 

DTT 10 0.00 0 

 
1 0.00 0 

L-Cys 10 0.00 0 

 
1 0.00 0 
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Table 2 Substrate specificity of BliLacc expressed as observed turnover number (kobs) and relative 

activity.   

Substrate (1 mM)  λ (nm) ε (mM-1 cm-1) kobs (s-1) 

Relative activity 

(%) 

Syringaldazine 525 6.50 1.60 ± 0.03 100 

o-Dianisidine 460 11.30 1.43 ± 0.06 90 

ABTS 414 36.60 1.16 ± 0.05 a 73 

2,6-DMP 468 49.60 1.10 ± 0.04 69 

L-DOPA 475 3.70 0.56 ± 0.004 35 

Catechol 420 3.45 0.44 ± 0.09 28 

o-Phenylenediamine 420 31.30 0.07 ±  0.004 4 

Hidroquinone 320 11.00 0.02 ± 0.002 1 

Gallic acid 520 N.A. 0.72 ± 0.10 b 45 

p-Phenylenediamine 485 N.A. 1.71 ± 0.19 b 107 

a  Measured at pH 3.0.  
b Calculated as mAbs/s per µM of BliLacc. 

 


