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Abstract 

Various microorganisms isolated from polluted environments, such as Pseudomonas sp. and 

Micrococcus sp. can synthesize exopolysaccharides (EPSs) which are natural, non-toxic and 

biodegradable polymers. EPSs play a key role in protection of microbial cells under various 

external influences. For humans, these substances have potential use in many industries. EPSs 

can be applied as a flavor or a fragrance carrier, an emulsifier, a stabilizer, a prebiotic, an 

antioxidant or an antitumor agent. In this study, we characterized an environmental 

microorganism that produces EPS, optimized EPS production by this strain and characterized the 

EPS produced. Isolate CH-KOV3 was identified as Brachybacterium paraconglomeratum. The 

sucrose level in the growth medium greatly influenced EPS production, and the highest yield was 

when the microorganism was incubated in media with 500 g/L of sucrose. The optimal 

temperature and pH were 28 ºC and 7.0, respectively. The nuclear magnetic resonance (NMR) 

results and GC-MS analysis confirmed that the residues were D-fructofuranosyl residues with β-

configuration, where fructose units are linked by β-2,6-glycosidic bonds, with β-2,1-linked 

branches. All these data indicate that the investigated EPS is a levan-type polysaccharide. Thus, 

it was concluded that Brachybacterium sp. CH-KOV3 could constitute a new source for 

production of the bioactive polysaccharide, levan. 

Keywords: polluted environments; exopolysaccharides; Brachybacterium paraconglomeratum. 
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1. Introduction 

In the last decades, huge amounts of waste materials from different origins and with varying 

properties have been released into the environment. The most important sources of industrial 

waste material are chemical industries and agriculture [1, 2]. Microorganisms isolated from 

polluted environments are already being used for processes such as bioremediation, in order to 

remove harmful chemicals from the environment in the most natural way [3].  

1.1. Exopolysaccharides produced by environmental isolates 

Some of the microbial isolates from polluted environments can synthesize a considerable amount 

of exopolysaccharides (EPSs) [4, 5]. EPSs are natural, non-toxic, and biodegradable polymers. 

They are synthesized intracellularly, but their polymerization occurs outside the cells [6, 7]. 

Some EPSs, such as xanthan, gellan, alginate, glucans, hyaluronan, succinoglycan, and levan, are 

long chain, high-molecular-mass water-soluble polymers [6-9]. EPSs can form a protective layer 

for the cells against harsh external environmental conditions; they have a role in protection 

against desiccation and predation, and many microorganisms produce them as a strategy for 

growing and adhering to solid surfaces [9-11]. Furthermore, these EPSs are synthesized in order 

to protect microorganisms from harmful effects of toxic chemicals present in the surrounding 

environment [8]. Microbially-produced EPSs have potential utility value for various industrial 

processes and play many parts in human lives. They can be used in the food and cosmetic 

industries as thickeners, stabilizers, sweeteners, probiotics, and color and flavor vehicles, as 

gelling and water-binding agents including viscosifiers, emulsifiers, biosorbents, flocculants, and 

as heavy metal removal agents in waste water treatment [1, 7-9, 11-14]. Furthermore, their 

biological activities include antitumor, antiviral, immunostimulatory and anti-inflammatory 

activities, as well as cholesterol-lowering effects [1, 7-9, 11, 13, 15]. 
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Several bacterial genera are known for their EPS production: xanthan – Xanthomonas; gellan – 

Sphingomonas; alginate – Azotobacter and Pseudomonas; glucans and α-glucans – 

Lactobacillus, Leuconostoc and Streptococcus, β-glucans – Achromobacter, Agrobacterium, 

Aerobacter, Azotobacter, Gluconacetobacter, Rhizobium, Salmonella and Sarcina; hyaluronan – 

Pseudomonas aeruginosa; succinoglycan – Agrobacterium, Alcaligenes, Rhizobium and 

Pseudomonas [6]. Today, known levan producers are from the following genera: Aerobacter, 

Bacillus, Erwinia, Rahnella, Pseudomonas, Streptococcus, Zymomonas and Brachybacterium [6, 

16]. 

1.2. Hydrocarbon degrading genus Brachybacterium 

Among hydrocarbon degrading microorganisms known for EPS production, Actinobacteria were 

found in soil polluted with polycyclic aromatic hydrocarbons, pesticides, herbicides and other 

persistent organic pollutants [17]. Recently, members of the genus Brachybacterium have been 

reported to be involved in the degradation of hydrocarbons [18-20]. The genus Brachybacterium 

(family Dermabacteraceae, class Actinobacteria), proposed by Collins et al, 1988, includes 

thirteen species: B. alimentarium, B. conglomeratum, B. faecium, B. fresconis, B. muris, B. 

nesterenkovii, B. paraconglomeratum, B. phenoliresistens, B. rhamnosum, B. sacelli, B. 

saurashtrense, B. tyrofermentans, and B. zhongshanense [21, 22].  

1.3. Polluted environment as a source of valuable exopolysaccharide-producing bacteria 

The wastewater canal Vojlovica (WWCV), located on the Danube River, collects wastewater 

from the industrial park in Pančevo, Serbia. WWCV was previously described [23]. Briefly, the 

industrial park consists of a petrochemical factory (HIP Petrohemija), chemical fertilizer factory 

(HIP Azotara), and oil refinery (NIS Rafinerija Nafte, Pančevo), and it is known for its long term 

pollution. Furthermore, in 1999 after the NATO air strikes, WWCV was contaminated with 
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various organic (polar and nonpolar) and inorganic substances: mineral oil, polycyclic aromatic 

hydrocarbons, ethylene dichloride, benzene, toluene, ethylbenzene, xylene, perfluorinated 

chemicals and mercury, and therefore, the canal has been proven to be one of the contamination 

hot spots in Serbia [23]. 

The aim of this study was to characterize environmental isolate CH-KOV3, a bacterium isolated 

from the sediment of WWCV, and a novel producer of the EPS, levan. Furthermore, 

optimization of levan production together with structural characterization of this EPS was 

conducted.  

2. Materials and Methods 

2.1. Sampling location 

 Sampling and determination of basic physicochemical and chemical characteristics of the 

sediment from WWCV was previously described, in which we confirmed the presence of 

significant amounts of perfluoroalkyl substances (PFASs) [23]. Our previous investigations also 

showed strong bioremediation potential of the microbial consortia composed of bacteria and 

fungi isolated from sediment of WWCV and sludge taken from the wastewater treatment plant of 

the industrial zone [24, 25]. During analysis of a zymogenous consortium of hydrocarbon-

degrading microorganisms isolated from WWCV, some of the isolated bacterial strains were 

found to synthesize considerable amounts of EPS. The microorganism which exhibited the 

greatest production of EPS was designated as CH-KOV3. 

2.2. Isolate CH-KOV3, an exopolysaccharide producer 

 Isolate CH-KOV3 originally belonged to a consortium of zymogenous hydrocarbon-

degrading microorganisms isolated from the sediment of WWCV, and is capable of using oil 

hydrocarbons as the sole source of carbon during growth on mineral base medium containing 2 g 
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of standard D2 diesel fuel in 1 L of medium. Medium was prepared according to the procedure 

described earlier [26]. Enrichment was performed by three successive inoculations in liquid 

mineral base medium with D2 diesel, incubated at 28 ºC and 200 rpm, and then the consortium 

was inoculated onto an agar plate. For further study, microorganisms were selected according to 

their morphological characteristics. Many isolates synthesized EPSs during growth on mineral 

media supplemented with D2 diesel; however, the microbial isolate CH-KOV3, as the best EPS 

producer, was selected for further, more detailed analysis.  

2.2.1. Characterization of isolate CH-KOV3  

2.2.1.1. Fatty acid methyl ester profile 

 Fatty acid methyl esters of isolate CH-KOV3 were determined according to the modified 

procedure given by Minnikin et al, 1975 [27]. Wet biomass (0.2 g) was refluxed for 3 hours with 

a mixture of toluene:methanol:sulfuric acid (5:5:0.2 V/V/V) in three replicates. After cooling in a 

round-bottomed reflux flask, 10 mL of saturated sodium chloride was added, and the whole 

solution was extracted twice with a mixture of chloroform:hexane (1:4 V/V, 2 x 10 mL). Extracts 

were washed with distilled water, dried with anhydrous sodium sulfate, and evaporated to 

dryness. Fatty acid composition was determined by comprehensive two dimensional gas 

chromatography–mass spectrometry (2D GC×GC-MS) performed with a GCMS (QP2010 Ultra, 

Shimadzu, Kyoto, Japan) and a 2D GC×GC thermal modulator (Zoex Corp). An Rtx®-1 

(RESTEK, Crossbond® 100 % dimethyl polysiloxane, 30 m × 0.25 mm I.D., 0.25-μm film 

thickness) and a BPX50 (SGE Analytical Science, 2.6 m×0.1 mm I.D., df=0.1 μm) column were 

connected through the 2D GC×GC modulator as the first and second capillary columns, 

respectively. Helium was used as the carrier gas. Injector temperature was constant: 200 ºC. The 

temperature program used was: initial temperature 40 ºC for 1 min, then 4 ºC per min until 300 
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ºC, and isothermal at 300 ºC for 5 min. Thermal modulation was 6 sec. The 2D GC×GC-MS data 

was collected and analyzed (automated mass spectral deconvolution and identification) with 

GCMS Solution software (Shimadzu). Spectrum analysis was performed using NIST11 and 

Wiley8 database libraries, and relative ratios of components were calculated from the 

corresponding peak areas. The 2D GC×GC-MS data were analyzed using ChromSquare Ver.2 

(Shimadzu), capable of directly reading 2D GC×GC data obtained with GCMS Solution, 

converting it to a 2-dimensional image.  

2.2.1.2. Gram-staining, catalase and oxidase tests 

Gram-staining of isolate CH-KOV3, as well as catalase and oxidase tests, were performed using 

standard methods [28, 29].  

2.2.1.3. Physiological-biochemical characterization  

 Physiological-biochemical characterization of isolate CH-KOV3 was conducted using 

Analytical Profile Index (API) (BioMérieux, France) kits: 20 NE, 20 E, CORYNE, and API 

ZYM. All API tests were performed according to the manufacturer’s recommendations. 

2.2.1.4. MALDI-TOF MS characterization  

 Isolate CH-KOV3 was characterized using a Bruker Autoflex II MALDI-TOF MS 

(Bremen, Germany) equipped with a UV nitrogen laser (337 nm) and a dual microchannel 

microplate detector. Together with whole (intact) bacteria, crude cell extracts were prepared 

accordingly [30] and also analyzed as previously described [31]. Spectra were recorded by Flex 

Control software (Bruker Daltonics, Bremen, Germany), and samples were analyzed in six 

replicates using Flex Analysis (Bruker Daltonics, Bremen, Germany). For each measurement, at 

least 3,000 individual spectra (300 shots at laser power from 10 different points of a dried sample 

spot) were collected and averaged to obtain MALDI-TOF MS spectrum. External calibration was 
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performed with protein standards (Bruker Protein Test Standard, Bruker Daltonics, Bremen, 

Germany). MALDI BioTyper db 6903 software was used for the protein profile analysis by 

pattern matching with the libraries. 

2.2.1.5. Molecular characterization of isolate CH-KOV3  

 Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Germany). The 16S 

rRNA gene was amplified by PCR using 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 

1492R (5'-CGGCTACCTTGTTACGACTT-3') primers. The amplified fragments were purified 

using QIAquick PCR Purification Kit, and sequencing was performed by Macrogen in the 

Netherlands. The obtained sequence was deposited in the NCBI Genbank database under the 

accession number KC881303.1. 

2.3. Production and purification of EPS  

 For EPS production, basal medium (BM) (100 g sucrose, 1 g beef extract, 0.6 g yeast 

extract, 3 g K2HPO4·3H2O, 3 g KH2PO4, 1 g NaCl, 0.2 g MgSO4·7H2O, 0.001 g FeSO4·7H2O in 

1000 mL of water, pH 7.0) was used [15]. Isolate CH-KOV3 was cultured in BM for 5 days at 28 

ºC and 200 rpm. After centrifugation at 10,000g for 10 min, the supernatant was mixed with two 

volumes of cold ethanol and left at 4 °C overnight. The precipitate was collected by 

centrifugation at 10,000g for 10 min and the pellet was dissolved in distilled water. The 

precipitation procedure with ethanol was repeated three times. Subsequently, the dissolved pellet 

was dialyzed against tap water and then against distilled water, concentrated by rotary 

evaporation, and finally lyophilized. EPS obtained by triple ethanol precipitation and dialysis is 

labeled as purified EPS hereinafter.   

2.4. Optimization of EPS production  
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 Optimization of EPS production was conducted in BM. The influence of the incubation 

temperature (20, 28, 37, and 45 ºC in BM with 100 g/L sucrose, pH 7.0, 5 days incubation and 

200 rpm), pH (pH of 5.0, 6.0, 7.0 and 8.0 in BM with 100 g/L sucrose, 5 days at 28 ºC and 200 

rpm) and concentration of sucrose (60, 100, 140, 200, 300, 500 and 600 g/L in BM at pH 7.0, 5 

days at 28 ºC and 200 rpm) on the production of levan were analyzed. All experiments were 

carried out in 500 mL Erlenmeyer flasks containing 200 mL of cultivation medium. Inoculation 

was performed by the addition of 1 mL of fresh overnight culture of CH-KOV3 containing 106 

CFU/mL. All experiments were replicated independently five times. 

2.5. Characterization of purified EPS  

 Every batch of produced and purified EPS was analyzed in triplicate and mean values 

were calculated. For the structural instrumental characterization of purified EPS, the following 

methods were applied: determination of molecular weight, planar chromatography (PC), thin 

layer chromatography (TLC), elementary organic microanalysis, Fourier transform infrared 

spectroscopy (FTIR), and nuclear magnetic resonance (NMR – 1D and 2D). Furthermore, 

purified EPS was analyzed for optical rotation, measurement of refractive index, and kinematic 

and dynamic viscosity. 

2.5.1. Molecular weight of purified EPS 

The average molecular weight (MW) of the investigated EPS was determined using gel 

permeation chromatography (GPC) on Sepharose CL-4B, as previously described [32]. 

2.5.2. Hydrolysis of purified EPS  

 Lyophilized purified EPS (2 mg) was hydrolyzed with 3 M trifluoroacetic acid – TFA (2 

mL) in a sealed tube for 12 h at 121 ºC, followed by evaporation under reduced pressure at 45 ºC 

to dryness. Residual TFA was removed by three evaporation cycles by addition of 0.4 mL of 
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isopropanol. The final residue was dissolved in 0.02 mL of distilled water and used for further 

analysis. Hydrolyzate was examined by PC on Whatman No.1 chromatography paper 

(descending method) in the solvent system ethyl-acetate:pyridine:water (10:4:3 V/V/V). 

Components were detected with alkaline silver nitrate [33]. 

2.5.3. Partial acid hydrolysis of purified EPS  

 Partial acid hydrolysis of purified EPS was performed by the modified method given by 

Dahech et al, 2012 [34] to determine the monosaccharide composition of the studied EPS. 

Aqueous solutions containing purified EPS (10 mg/mL, 8.0 mL) and 0.125 % oxalic acid (8.0 

mL) were separately heated to 80 ºC and then were mixed in a 1:1 ratio. Hydrolysis was 

performed at 80 ºC for 20 min. At regular intervals, every two minutes, aliquots (2.0 mL) were 

taken, neutralized with BaCO3, and products of hydrolysis were examined by TLC in the solvent 

system chloroform:acetic acid:water (6:7:1 V/V/V). The spots were visualized by spraying with 

50 % sulfuric acid solution and heating at 100 ºC for 10 min. Fructose, glucose and sucrose were 

used as standards.  

2.5.4. Methylation and reductive cleavage 

Methylation was performed by the Ciucanu and Kerek method [35] as modified by Needs and 

Selvendran [36]. In brief, lyophilized purified EPS was dried at 50 °C for 24 h prior to use. A 

sample of EPS (10 mg) was dissolved in anhydrous DMSO (1.0 mL) under argon and then 

methylated by treatment with powdery NaOH (0.15g) and iodomethane (0.25 mL). The 

permethylated EPS was extracted with CHCl3, and the FTIR spectrum of the extracted EPS was 

examined. The absence of the characteristic frequencies corresponding to hydroxyl groups in the 

range 3200 – 3500 cm-1 was an indication of complete methylation.  
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The permethylated EPS was subjected to reductive cleavage as described by Rolf and Gray 

(1984) [37]. The reducing agent was prepared by mixing the following compounds: boron 

trifluoride etherate (1.55 mL), triethylsilane (2.0 mL), trifluoroacetic acid (0.32 mL), and 

dichloromethane (1.13 mL). The reducing mixture (2.75 mL) was added to the methylated EPS 

(5 mg) and the reaction was peformed for 24 h at 0 oC to produce corresponding anhydroalditols. 

These were then acetylated with acetic anhydride (0.25 mL) at room temperature for 1 h. The 

acetylated, methylated anhydroalditols were dissolved in CH2Cl2, the solution was washed with 

water three times, and the organic layer was evaporated under a stream of nitrogen, and analyzed 

by GC-MS. 

2.5.5. GC-MS analysis 

GC-MS analyses were performed on a GC×GC-MS (Shimadzu, Kyoto, Japan) with the thermal 

modulator turned off. Samples were injected in splitless mode. The injection volume was 1 μl 

and the injector temperature was 250 °C. The carrier gas (He) flow rate was 2.07 mL/min at 

40 °C (constant pressure mode). The column temperature was programmed linearly in a range 

40–310 °C at a rate of 10 °C/min with an initial 1 min and final 7 min hold. Mass spectra were 

acquired in the electron ionization mode (EI) with ion source temperature of 220 °C and the scan 

range 40–550 m/z. 

2.5.6. Elementary organic microanalysis  

 The content of carbon, hydrogen, nitrogen and sulfur in purified EPS was analyzed using 

an automated analyzer (Vario EL III CHNS/O, Elementar, Hanau, Germany). Combustion 

temperature was 1150 °C, detector: TCD. Dynamic working range: C: 0.03-20 mg; H: 0.03-3 
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mg; N: 0.03-2 mg; S:0.03-6 mg. Precision/standard deviation < 0.1 % abs. Recovery rate: > 99.5 

%.  

2.5.7. FTIR spectroscopy  

 FTIR spectra of purified EPS were recorded on a FTIR spectrometer (a Nicolet 6700 

from Thermo Nicolet Corp., Madison, WI) in the Attenuated Total Reflectance-Fourier 

Transform Infrared Spectroscopy (ATR-FTIR) mode. 

2.5.8. NMR spectroscopy  

All NMR spectra of the investigated EPS were measured on a Bruker AVANCE III 500 

spectrometer at 500.26 MHz (1H) and 125.8 MHz (13C), using a 5 mm broad-band probehead. 

Spectra were obtained at 298 K, in deuterium oxide (D2O), with trimethylsilyl propionate (TSP) 

as the internal reference standard. Chemical shifts are expressed in ppm. Standard homonuclear 

and heteronuclear correlated two-dimensional (2D) techniques were used: correlation 

spectroscopy (COSY), distortionless enhancement by polarization transfer (DEPT 135) and 

heteronuclear single quantum coherence (HSQC). 

2.5.9. Optical rotation  

 Optical rotation of purified EPS dissolved in Milli-Q water was determined using a 

polarimeter (Polartronic MH8, Schmidt and Haensch, Germany), in a 100 mm long cuvette, with 

a volume of 4.4 cm3, at polarized light wavelength 589 nm and 25 ºC. 

2.5.10. Refractive index  

 Measurement of the refractive index of purified EPS dissolved in Milli-Q water was 

performed using a refractometer (Abbemat 300, Anton Paar, Germany), at polarized light 

wavelength of 589 nm and 20 ºC.  

2.5.11. Dynamic and kinematic viscosity  
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 Measurement of dynamic and kinematic viscosity of purified EPS dissolved in Milli-Q 

water was performed using a capillary viscometer (Ostwald, Witteg, Germany), at 25 ºC.  

3. Results and Discussion 

3.1. Characterization of isolate CH-KOV3  

 In order to characterize isolate CH-KOV3, the following methods were applied: analysis 

of fatty acid methyl ester profile, API tests, MALDI-TOF MS characterization, and molecular 

characterization by sequencing of 16S rRNA gene followed by construction of a phylogenetic 

tree. 

3.1.1. Fatty acid methyl ester profile 

 Figures 1A and 1B show GC-MS and comprehensive 2D GCxGC-MS results of fatty 

acid methyl ester analysis of isolate CH-KOV3, respectively. The spectrum consists of straight-

chain, saturated, iso and anteiso methyl-branched fatty acids. The relative ratios of fatty acid 

methyl esters was: ai-C15, 42.63 %; i-C15, 19.93 %; ai-C17, 16.18 %; i-C17, 9.06 %; i-C16, 5.97 %; 

n-C16, 3.91 %; n-C18, 1.71 %; C18:2, 0.61 % (n - normal fatty acid methyl esters; i – iso methyl-

branched fatty acids; ai - anteiso methyl-branched fatty acids). The fatty acid composition of 

isolate CH-KOV3 is similar to data from the literature for Brachybacterium (B.) 

paraconglomeratum NCIB9861T and DSM46341 T, but the relative ratio differed in relation to 

these previously published data. This may be due to differences among the strains or the stress 

conditions in which Brachybacterium sp. CH-KOV3 lived [38-40]. Based on the literature, B. 

paraconglomeratum is a Gram-positive, nonmotile, non-sporulating, aerobic or facultatively 

anaerobic, catalase positive and oxidase negative bacterium. Cells are small, single, oval or rod-

shaped, colonies are smooth and yellow [38]. The characteristics of our isolate, Brachybacterium 

sp. CH-KOV3, corresponded to this literature description of B. paraconglomeratum. Thus, based 
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on fatty acid methyl ester profile, it was confirmed that the EPS-producing isolate CH-KOV3 

belongs to the genus Brachybacterium. 

Figure 1. 

3.1.2. Physiological-biochemical characterization of isolate CH-KOV3  

 API test results are available in the Supplementary data (Table S-1). Based on the 

literature data, B. paraconglomeratum produced urease, indole, and H2S, hydrolyzed starch and 

esculin, but not gelatine or Tweens 20, 40, 60, or 80, and reduced nitrate [38-40]. Based on the 

API test software, it was not possible to obtain positive identification to a high percentage of 

agreement with the database; however, valuable data was collected. Our isolate, 

Brachybacterium sp. CH-KOV3, hydrolyzes esculin, but not urea or gelatine, it produces acid 

and acetoin (3-hydroxybutanone), but does not produce H2S or indole. Reduction of nitrate to 

nitrite was confirmed. Clearly, the isolate we studied produces a range of different enzymes. 

There is evidence that B. paraconglomeratum performs assimilation and fermentation of many 

carbon sources [38-40], but Brachybacterium sp. CH-KOV3 has far less scope for substrate 

assimilation and fermentation. The relatively different biochemical profile of Brachybacterium 

sp. CH-KOV3 compared to other strains of this genus, particularly B. paraconglomeratum, can 

be interpreted as its adaptation to the habitat in which it previously lived. 

3.1.3. MALDI-TOF MS 

 This technique was used to characterize intact whole cells of isolate CH-KOV3, and also 

to examine an ethanol extract of this microorganism. There was no significant difference 

between MALDI-TOF MS spectra of whole cells and an ethanol extract of CH-KOV3, and thus, 

only the spectrum of intact whole cells of isolate CH-KOV3 is shown in Figure 2. In the field of 

prokaryotic taxonomy, MALDI-TOF MS has been increasingly gaining in importance over the 
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last few years [21, 31, 41]. Ribosomal proteins, being dominant in the cell, are the target of this 

analysis, as well as other proteins copied in high numbers [42]. The mass spectrum obtained can 

be considered as a specific fingerprint of the bacterium analyzed, because each particular protein 

has a unique pattern of m/z values. The Brachybacterium strains included in the MALDI 

Biotyper db 6903 are the following: Brachybacterium faecium DSM 4810T DSM, 

Brachybacterium muris 7 RLT, Brachybacterium nesterenkovii DSM 9573T DSM and 

Brachybacterium nesterenkovii DSM 9574 DSM. However, our MALDI-TOF MS did not 

reliably identify environmental isolate CH-KOV3. This is not surprising because MALDI 

Biotyper db 6903 software was developed primarily for routine identification of clinical bacterial 

isolates. Also, other authors have stated that Brachybacterium sacelli is not present in the 

MALDI-TOF database from Brüker [43]. However, the given protein profile of Brachybacterium 

sp. CH-KOV3 can be considered as a characteristic of the isolated microorganism, and according 

to available literature, this is the first MALDI-TOF MS spectrum of B. paraconglomeratum 

published.  

Figure 2. 

3.1.4. Molecular characterization of isolate CH-KOV3 

 The gene for 16S rRNA was isolated and analyzed, and the sequence of base pairs was 

deposited in the database GenBank, accession number KC881303.1. Based on this analysis, CH-

KOV3 belongs to the genus Brachybacterium and contains 56.7 % of GC pairs. When compared 

to the National Center for Biotechnology Information (NCBI) sequence database, the 16S rRNA 

sequence of CH-KOV3 displayed the greatest level of homology to B. paraconglomeratum (99 

% similarity with B. paraconglomeratum JCM 17781 (NR_113401, 31/08/2016, Actinobacteria). 

However, Brachybacterium sp. CH-KOV3 also showed 98 % sequence similarity to B. 
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conglomeratum J 1015 (NR_104686) and 98 % similarity to B. saurashtrense (NR_116516.1). 

As already stated, Actinobacteria are found in soil polluted by pesticides, herbicides and other 

persistent organic pollutants (POPs), and due to their ability to use pollutants as carbon sources, 

these bacteria have considerable potential for biodegradation. In addition to biodegradation, the 

removal process of POPs involves mechanisms of absorption, adsorption, and desorption [44-

46]. In response to microbial growth on hydrocarbons in contaminated soil, Actinobacteria can 

produce biosurfactants and bioemulsifiers. These structurally diverse substances reduce surface 

tension at the air-water interface, solid-liquid interface or between immiscible liquids [47]. In the 

case of Brachybacterium sp. CH-KOV3, EPSs may act as bioemulsifiers [4]. 

3.1.5. Phylogenetic tree of the genus Brachybacterium 

 A phylogenetic tree for genus Brachybacterium was constructed in MEGA 7 software 

using the Maximum Likelihood method. The 16S rRNA gene sequence-based tree showing the 

position of Brachybacterium sp. CH-KOV3 within the genus Brachybacterium is given in 

Supplementary data (Figure S-1).  

3.2. Production of EPS 

3.2.1. Optimization of EPS production 

3.2.1.1. Growth curve of Brachybacterium sp. CH-KOV3 

A typical growth curve of Brachybacterium sp. CH-KOV3 is presented in Figure S-2A. The 

highest number of microorganisms was obtained after 48 h (1.2x106 CFU/mL), followed by 

stationary phase of growth. After 84 h, a decrease in the number of microorganisms occurs. Also, 

concentration of levan produced is given in the same figure. The highest concentration of levan 

was detected in 72 h.  
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3.2.1.2. Effect of temperature on EPS production 

The effect of temperature on EPS production by Brachybacterium sp. CH-KOV3 in BM with 

100 g/L sucrose at different times (24, 72, 120 h) is presented in Figure S-2B. Based on our 

results, the temperature affected EPS production to a minor extent. Brachybacterium sp. CH-

KOV3 is an environmental isolate exhibiting maximum growth rate in laboratory conditions at 

28 ºC. Production of EPS was the highest at this temperature, and ranged from 2.13 to 2.63 g/L 

at the tested time intervals. The same production level was confirmed at 37 ºC after 24 h of 

incubation (2.13 g/L), but after 72 and 120 h, the yield first increased then decreased (2.5, 1.43 

g/L respectively). The lowest production rate and growth was confirmed when the incubation 

temperature was 45 ºC (24 h - 1.63 g/L; 72 h - 1.26 g/L; 120 h - 1.76 g/L).  

3.2.1.3. Effect of pH on EPS production 

The culture medium pH also has an important role at the start of the production of EPS [48]. The 

effect of pH on production of EPS by Brachybacterium sp. CH-KOV3 in BM with 100 g/L 

sucrose, together with changes in the number of bacteria is given in Supplementary data (Figure 

S-2C). Maximum growth and maximum EPS production was obtained at pH 7.0, which is not 

surprising, since the sediment from which Brachybacterium sp. CH-KOV3 was isolated was pH 

7.3 [23]. 

3.2.1.4. Effect of sucrose concentration on EPS production 

The effect of sucrose concentration on the production of EPS by Brachybacterium sp. CH-KOV3 

after 24, 48 and 72 hours is presented in Figure S-3. It is known that in laboratory conditions, 

sucrose concentration has a great influence on EPS production. For example, Őner et al, 2016 

[49] compared levan production by various bacteria exposed to sucrose-containing medium (60-

400 g/L sucrose) over various time intervals, and found greater levan yields in higher sucrose 
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media. Furthermore, the level of levan production by Bacillus licheniformis NS032 was 47.8 g/L 

when sucrose was low (sucrose 196.8 g/L), while in a high sucrose system, the levan yield was 

99.2 g/L (sucrose 397.6 g/L) [48]. In the case of Brachybacterium sp. CH-KOV3, the sucrose 

level also had great influence on EPS production, and the highest yield, 45.23 g/L, was obtained 

when Brachybacterium sp. CH-KOV3 was incubated in media with 500 g/L of sucrose. It was 

concluded that Brachybacterium sp. CH-KOV3, in optimized conditions, produces close to 50 

g/L of EPS. As far as we are aware, this is one of the rare studies on levan-producing 

Brachybacterium sp., and the level of levan produced was five times higher than was described 

in another very recently published study [16].  

3.2.2. Characterization of EPS  

3.2.2.1. Molecular weight of the purified EPS 

The molecular weight of the investigated EPS produced by Brachybacterium sp. CH-KOV3 was 

determined by GPC. EPS was eluted at the column void volume, indicating that the molecular 

weight was higher than separating range of the Sepharose CL-4B column used (> 106 Da). This 

was consistent with the absence of α-D-Glc signal in the 1HNMR spectrum (section 3.2.2.7). 

3.2.2.2. Hydrolysis of purified EPS  

 After total acid hydrolysis with 2 M TFA, the pure EPS produced just one 

monosaccharide component, fructose. Brachybacterium sp. CH-KOV3 produces EPS belonging 

to the group of levan-type fructans. 

3.2.2.3. Partial acid hydrolysis of purified EPS 

 The results of partial hydrolysis of EPS with 0.0625 % oxalic acid in TLC are shown in 

Figure S-4. With increasing time of partial acid hydrolysis (up to 16 min), fructo-oligosaccharide 

fragments were obtained that had a degree of polymerization of three or more, along with 
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decreasing basic polysaccharide, which is in accordance with literature data for other levan-type 

polysaccharides [50, 51]. In the presence of 0.0625 % oxalic acid, the EPS was completely 

hydrolyzed in 10 min, unlike some levan-type polysaccharides which took one or more hours to 

completely hydrolyze with stronger oxalic acid [34, 51]. It can be assumed that the differences in 

hydrolysis patterns are the result of differences in molecular weight and/or branching degree of 

the various EPSs. 

3.2.2.4. GC-MS analysis of methylation products  

The purified EPS was permethylated and subsequently subjected to reductive-cleavage and 

acetylation of the cleaved monomer units, which were further analyzed by GC-MS. According to 

the peak areas on the total ion chromatogram (Figure 3), three sets of peaks were identified by 

their retention times and typical breakdown patterns [37, 52]. Two dominant peaks (peaks 3 and 

4) occurred at retention times 18.34 min and 18.54 min, the fragmentation patterns of which 

corresponded to 6-O-acetyl-2,5-anhydro-1,3,4-tri-O-methyl-D-mannitol and 6-O-acetyl-2,5-

anhydro-1,3,4-tri-O-methyl-D-glucitol respectively, and represented (2,6)-linkages of 

fructofuranoses. The summation of these peaks had a peak area that corresponded to 77.5% and 

referred to the main chain. Two peaks eluted at 16.21 min and 16.38 min were identified as 2,5-

anhydro-1,3,4,6-tetra-O-methyl-D-mannitol and 2,5-anhydro-1,3,4,6-tetra-O-methyl-D-glucitol, 

respectively (peaks 1 and 2), and corresponded to the nonreducing terminal units of the glycan 

molecules. The fructosyl residues that indicate the branching points of the polysaccharide chain, 

i.e. (2,1) branching, corresponded to peaks at retention times 20.24 min and 20.54 min, which 

were identified by fragmentograms (peaks 5 and 6) as 1,6-di-O-acetyl-2,5-anhydro3,4-di-O-

methyl-D-mannitol and 1,6-di-O-acetyl-2,5-anhydro-3,4-di-O-methyl-D-glucitol, respectively. 

The sums of the areas of peaks relating to the terminal units (11.2%) and areas of peaks 
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corresponding to the branching points (11.3%) had a ratio very close to 1:1, indicating that at 

each branching point, one nonreducing fructofuranosyl residue was attached. Analysis of 

methlation results shown by GC-MS suggested that the main structural feature of the EPS 

produced is a basic chain of (2,6)-linked fructofuranoses. The presence of small quantities 

(~11%) of di-O-methyl-fructoses indicated the moderate branching of the polysaccharide. The 

main chain was substituted at position O-1 with single D-fructofuranoses (~11%). Mass spectra 

of partially methylated anhydroalditol acetates are given in Figure 4. 

Figure 3. 

Figure 4. 

3.2.2.5. Structural characterization of elementary organic constituents of EPS  

 The EPS consisted of carbon, hydrogen, oxygen, and based on microanalysis, the 

relative ratio was 39.04:6.74:54.22. After purification, the EPS did not contain any nitrogen or 

sulfur, while the content of C and H determined corresponded to polysaccharide molecules. In 

fact, the obtained values were close to the theoretical values for a neutral polysaccharide, 

purified from protein, and nucleic acids (C:H:O=38.86:7.02:54.12) [15].  

3.2.2.6. FTIR spectroscopy  

 The FTIR spectrum of purified EPS is given in Figure S-5. The spectrum contained 

absorption bands, characteristic for a carbohydrate structure, in the range of 3500-807 cm-1. The 

FTIR spectrum contained a characteristic broad absorption band in the range 3500 - 3000 cm-1, 

corresponding to the valence vibrations of -OH groups. The band at 2946.8 cm-1 came from C–H 

stretching vibration, and the band at 1647.9 cm-1 was due to bound water molecules. The bands 

in the region of 1500 and 1200 cm-1 were assigned to C–H deformation vibration. The bands 

between 1127.4 and 1059.0 cm-1 corresponded to C–O–C and C–O–H stretching vibration. 
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Characteristic absorption at 925.2 cm-1 and 807.1 cm-1 resulted from the stretching vibration of 

the furan ring. All absorption bands were identical with bands from literature for levan-type 

polysaccharide [15, 53]. 

3.2.2.7. NMR spectroscopy  

The 1H NMR spectrum of the investigated EPS (Figure 5A) shows characteristic chemical shifts 

for carbohydrate ring protons, in the range of 3.4 to 4.3 ppm. There is no signal in the anomeric 

proton region, which suggests the absence or low abundance of glycosidic protons. The 1H NMR 

spectrum of EPS showed seven main proton signals between 3.4 and 4.3 ppm. These values were 

due to β-Fruf units and suggested the EPS had a levan type structure. Similar chemical shifts for 

proton signals were observed with the levan produced by Bacillus or Zymomonas [54, 55]. The 

13C NMR spectrum of the investigated EPS, given in Figure 5B, contained chemical shifts in the 

range of 62.6 to 106.9 ppm, which are typical for carbons in the carbohydrate rings of 

polysaccharides. In the 13C NMR spectrum of the investigated EPS, six intense peaks from low 

to high magnetic field occurred: 106.9 ppm (C2), 82.98 ppm (C5), 78.99 ppm (C3), 77.89 ppm 

(C4), 66.08 ppm (C6), and 62.60 ppm (C1). The resonances of carbons were ascribed to β-

fructofuranose units by comparison with the 13C NMR data of the standard methylglycoside 

(Bock and Pedersen, 1983) [56]. The relative positions of the signals were in accordance with 

levan type fructan [15, 57]. 

DEPT 135 analysis (the relevent section of the spectrum is given in Figure 5C) was used to 

determine the degree of hydrogenation of each carbon, considering that DEPT signals of CH and 

CH3 carbons have positive and opposite amplitudes to CH2 carbons. The DEPT spectrum showed 

intense signals at δ 82.99, δ 79.00, and δ 77.90 due to CH protons of C-5, C-3 and C-4, 

respectively. The signals at δ 66.09 and δ 62.61 were attributed to CH2 protons of C-6 and C-1, 
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respectively. The results obtained are consistent with the data reported by Dahech et al, 2013 

[58].  

The part of the COSY spectrum of the investigated EPS, shown in Figure 5D, unequivocally 

confirmed cross peaks H6a/H6b at δ 3.88/3.54, H5/H6b at δ 3.94/3.53, H4/H5 at δ 4.09/3.94 and 

H3/H4 at δ 4.17/4.08. These characteristic chemical shift correlations, and the absence of any 

correlation peaks with the other protons in the region 3.6-3.8 ppm, confirmed their assignation as 

H1a and H1b, which is in accordance with the literature data for levan [59]. 

The 2D hetero-correlated HSQC spectrum of the investigated EPS, shown in Figure 5E, indicates 

direct correlations between skeletal protons and carbons of the sugar units that constitute the 

EPS. Diagnostic cross peaks H5/C5 at δ 3.94/82.98, and H6a, H6b/C6 at δ 3.89, 3.55/66.08 were 

detected, which are similar to the values of another fructan with levan structure [54]. Other cross 

peaks observed in the HSQC spectrum (H1a, H1b/C1 at δ 3.76;3,66/62.60, H3/C3 at δ 

4.17/78.99, H4/C4 at δ 4.09/77.89) were also in accordance with data for fructan obtained by 

Matulova et al, 2011. 

Figure 5. 

3.2.2.8. Optical rotation, refractive index, and dynamic and kinematic viscosity 

The measured refractive index, dynamic and kinetic viscosities are given in Table 1. Total EPS 

hydrolysis showed the presence of fructose only, and the negative value of specific optical 

rotation obtained in the current study (-38.5 º) indicates the presence of beta glycoside bonds. 

Both results suggest that the produced EPS is fructan type [48, 60]. The measured refractive 

index, dynamic and kinetic viscosities can be considered as characteristic of EPS produced by 

Brachybacterium sp. CH-KOV3. 
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Based on all collected instrumental data, the chemical structure of EPS produced by 

Brachybacterium sp. CH-KOV3 is given in Figure 6. 

Figure 6. 

4. Conclusions 

 In conclusion, isolate CH-KOV3 belongs to the genus Brachybacterium. The EPS 

produced by Brachybacterium sp. CH-KOV3 is a levan-type polysaccharide. This is one of the 

rare studies on levan-producing Brachybacterium sp., but the level of levan produced was five 

times higher than that produced by another Brachybacterium isolate. All data indicate that 

Brachybacterium sp. CH-KOV3 could be a new source for the production of levan. 
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Figure captions 

Figure 1. The fatty acid methyl ester profile of Brachybacterium sp. CH-KOV3 a) GC-MS; b) 

2D GCxGC-MS. For identification, NIST11 and Wiley8 databases were used. The spectrum 

consists of straight-chain, saturated, iso and anteiso methyl-branched fatty acids (n- normal fatty 

acids methyl esters; i - iso; ai - anteiso methyl-branched fatty acids). 

Figure 2. MALDI-TOF MS spectrum of intact whole cells of Brachybacterium sp. CH-KOV3. 

This spectrum was analyzed with MALDI Biotyper db 6903 software. 

Figure 3. Gas chromatogram of partially methylated anhydroalditol acetates of EPS. Numbered 

peaks: 1) 2,5-anhydro-1,3,4,6-tetra-O-methyl-D-mannitol; 2) 2,5-anhydro-1,3,4,6-tetra-O-

methyl-D-glucitol; 3) 6-O-acetyl-2,5-anhydro-1,3,4-tri-O-methyl-D-mannitol; 4) 6-O-acetyl-2,5-

anhydro-1,3,4-tri0-methyl-D-glucitol; 5) 1,6-di-O-acetyl-2,5-anhydro-3,4-di-O-methyl-D-

mannitol; 6) 1,6-di-0-acetyl-2,5-anhydro-3,4-di-O-methyl-D-glucitol. 

Figure 4. Mass spectra of partially methylated anhydroalditol acetates. (A) 2,5-anhydro-1,3,4,6-

tetra-O-methyl-D-mannitol; (B) 2,5-anhydro-1,3,4,6-tetra-O-methyl-D-glucitol; (C) 6-O-acetyl-

2,5-anhydro-1,3,4-tri-O-methyl-D-mannitol; (D) 6-O-acetyl-2,5-anhydro-1,3,4-tri-methyl-D-

glucitol; (E) 1,6-di-O-acetyl-2,5-anhydro-3,4-di-O-methyl-D-mannitol; (F) 1,6-di-O-acetyl-2,5-

anhydro-3,4-di-O-methyl-D-glucitol. 

Figure 5. (A) The 1H NMR spectrum of purified EPS produced by Brachybacterium sp. CH-

KOV3; (B) The 13C NMR spectrum of purified EPS produced by Brachybacterium sp. CH-

KOV3; (C) Section of the DEPT 135 spectrum of purified EPS produced by Brachybacterium 

sp. CH-KOV3; (D) Part of the COSY spectrum of purified EPS produced by Brachybacterium 

sp. CH-KOV3; (E) Fragment of the HSQC spectrum of purified EPS produced by 

Brachybacterium sp. CH-KOV3 
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Figure 6. Chemical structure of EPS produced by Brachybacterium sp. CH-KOV3. This EPS is 

a levan-type polysaccharide, with fructose units linked by β-2,6-glycosidic bonds (the main 

chain), and with β-2,1-linked branches. 
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Table 1. Optical rotation, refractive index, kinematic and 

dynamic viscosity of purified polysaccharide solution. 

Specific rotation [α]25
D ( º )  -38.5 (c=0.2 g / 100 g water) 

Refractive index 1.33452±0.00002 

Density of solution (g / cm3) 1.0018 

Dynamic viscosity (mPa x s) 1.1602 

Kinematic viscosity (10-6 m2 / s) 1.1581 

 


