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Nitrate-assisted photocatalytic efficiency of defective Eu ̶ doped 
Pr(OH)3 nanostructures  

S. Aškrabić,*a V. D. Araujo,b M. Passacantando,c M. I. B. Bernardi,d N. Tomić,a B. Dojčinović,e D. 
Manojlović,f B. Čalija,g M. Miletića and Z. D. Dohčević-Mitrović*a 

Pr(OH)3 one dimensional nanostructures present less studied member of lanthanide hydroxides which recently 

demonstrated excellent adsorption capacity for organic pollutant removal from wastewater. In this study Pr1-xEux(OH)3 (x = 

0, 0.01, 0.03, 0.05) defective nanostructures were synthesized by facile and scalable microwave-assisted hydrothermal 

method using KOH as alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic 

and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron 

spectroscopy (XPS), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Transmission electron 

microscopy (TEM), Field emission scanning  electron microscopy (FE-SEM), Raman, Infrared (IR), Photoluminescence (PL) 

and Diffuse reflectance spectroscopy (DRS). It was deduced that incorporation of Eu3+ ions promotes the formation of 

oxygen vacancies in already defective Pr(OH)3, changing at the same time  the Pr(OH)3 nanorods morphology. The 

presence of KNO3 phase was registered in Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH)3 nanostructures 

display improved photocatalytic activity in reactive orange (RO16) dye removal under UV-vis light irradiation. Enhanced 

photocatalytic activity of Eu-doped Pr(OH)3 nanostructures is caused by synergetic effect of oxygen vacancies and Eu3+ 

(NO3
−) ions present on Pr(OH)3 surface, on charge separation efficiency and formation of  reactive radicals. In addition, 3% 

Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic 

attraction with anionic dye. Pr1-xEux(OH)3 nanostructures with possibility of tuning their adsorption/photocatalytic 

properties present great potential for wastewater treatment. 

 

Introduction 

Nanocrystalline rare earth hydroxides have started to draw 

attention in the recent years because they are relatively facile to 

synthesize and usually do not require high temperature annealing. 

As all rare earth compounds, lanthanide hydroxides display 

interesting catalytic, optical, magnetic and adsorptive properties1-5. 

They also represent straight forward approach for obtaining rare 

earth oxides, since annealing at higher temperatures transforms 

these hydroxides to oxides. Rare earth hydroxides in the form of 

one dimensional nanostructures were synthesized by different 

methods such as precipitation, hydrothermal or microemulsion 

method or electrodeposition2-9. It is known that lanthanide 

hydroxides most often crystallize into one dimensional (1D) 

structures, such as nanorods, nanobundles or nanobelts. 1D porous 

structures have potential for application in water pollutant removal 

since their dimensionality makes them much more accessible to the 

pollutant molecules. On the other hand, it is expected that the 

abundance of -OH groups (inherent in these materials) can have 

significant impact on their photocatalytic and adsorptive properties. 

As 1D nanostructures are expected to have better surface activity if 

the total surface to volume ratio is higher, it is of interest to obtain 

nanorods/nanowires with high length-to-diameter ratio. 1D 

geometry (the aspect ratio of longer to shorter dimension) can be 

tuned in hydrothermal synthesis process by changing the molar 

ratios of [OH-]/[Ln3+], where OH- ions originate from hydroxide 

precursor, and Ln3+ ions from lanthanide salt or oxide, but this ratio 
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is also dependent on the choice of alkaline metal hydroxide. In the 

case of Eu(OH)3 it was shown that with increasing ratio of 

[OH-]/[Eu3+], the aspect ratio of the 1D nanostructures decreased 

when NaOH was used4, but increased when KOH was used10. 

Among nanocrystalline lanthanide hydroxides, electrochemically 

prepared 1D Pr(OH)3 nanostructures were shown to possess 

excellent adsorptive properties regarding dye removal from water6, 

7. Electrodepositon was also used to produce 1D Pr(OH)3 

nanostructures that demonstrated good adsorption of phosphates8. 

Furthermore, 1D porous Pr(OH)3 nanowire bundles synthesized by 

template-free electrochemical deposition method demonstrated 

good ferromagnetic properties2. In addition, toxicity studies of 

porous Pr(OH)3 nanostructures demonstrated their great potential 

as environmentally friendly adsorbent materials7.  

There is only a few papers dedicated to the investigation of 1D 

Pr(OH)3 nanostructures2, 6-9 and majority of them concerned 

adsorptive properties of this material. To the best of our 

knowledge, photocatalytic properties of pure or doped Pr(OH)3 

have not been investigated up to present. This is probably due to 

the relatively large band gap of these materials (4.7 eV) and their 

consequent insufficient efficiency in absorption of the solar 

radiation. However, recent work by Dong et al3 showed that oxygen 

vacancies can create electronic states within the band gap of 

La(OH)3 nanorods, extending their photoresponse range and 

making them very efficient photocatalysts. In addition to  this, 

doping of La(OH)3 nanorods with lanthanides, Ln3+, improved 

drastically their photocatalytic activity, where Eu3+ was one of 

dopants that produced best results in this direction11.  

In this study Pr(OH)3 nanorods and Pr1-xEux(OH)3 (x = 0.01, 0.03, 

0.05) nanostructures were obtained by microwave-assisted 

hydrothermal method. We demonstrated that Eu doping influences 

the changes in Pr(OH)3 morphology, adsorption affinity and can 

substantially increase the photocatalytic activity of Pr(OH)3 

nanorods towards dye degradation. Additionally, the doping 

changes the content of oxygen vacancies, which, together with 

synthesis-introduced nitrates and morphology, determine whether 

the resulting nanostructures are dominantly photocatalysts or 

adsorbents. Facile and scalable synthesis, high photocatalytic 

activity of Eu−doped Pr(OH)3 nanostructures and the possibility of 

tuning the ratio of their adsorptive/photocatalytic activity present a 

great potential for their application in efficient and cost-effective 

pollutant removal. 

Experimental 

Preparation of pure and Eu−−−−doped Pr(OH)3 nanostructures 

Pr1-xEux(OH)3 (x = 0, 0.01, 0.03, 0.05) nanostructures were 

prepared by the microwave-assisted hydrothermal method, from 

the precursor oxides Pr6O11 and Eu2O3. The synthesis procedure 

included the following steps: firstly, precursors were dissolved in 

aqueous HNO3, subsequently, 0.02 mol of dissolved Pr- and Eu- 

precursors (0, 1%, 3% and 5% at. Eu) were added into 50 mL of 

distilled water. After that 50 mL of a 10 M KOH solution was added 

rapidly under vigorous stirring. KOH was chosen as a precursor for 

hydrothermal synthesis of pure and doped Pr(OH)3 nanorods in this 

study, as it has been shown that it enhances formation of 1D 

nanorods with higher ratio of length to diameter10. The mixed 

solution was placed in a 110 mL Teflon autoclave (filling 90% of its 

volume) which was sealed and placed in a microwave assisted 

hydrothermal system, applying 2.45 GHz of microwave radiation at 

a maximum power of 800 W. The temperature was measured with 

a temperature sensor (type K thermocouple) inserted inside the 

vessel. Each as-prepared solution was subjected to microwave 

hydrothermal synthesis and heated to a temperature of 140 °C for 

10 min. The products were then air-cooled to room temperature. 

The as-obtained precipitate powder was washed several times with 

distilled water and isopropyl alcohol and then dried on a hot plate 

at 60 °C for 24 h. 

Characterization 

The powder X-ray diffraction (XRD) characterization was performed 

using a Shimadzu diffractometer (Model XRD-7000, CuKα radiation 

(λ=1.54 Å), 40 kV and 30 mA). The scanning range was between 5 

and 120° (2θ), with a step size of 0.02° and a step time of 5.0 s. 

Rietveld analysis was performed using the Rietveld refinement 

program GSAS12. A pseudo-Voigt profile function was used. The 

specific surface area (SBET) was estimated from the N2 

adsorption/desorption isotherms at liquid nitrogen temperature 

following the multipoint BET procedure, using a Micromeritics ASAP 

2000. Determination of the concentrations of europium in doped 

samples was performed by Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP-OES), using an iCAP 6500 Duo ICP 

(Thermo Fisher Scientific, Cambridge, United Kingdom) 

spectrometer and RACID86 Charge Injector Device (CID) detector, 

with iTEVA operational software. The quantification of europium in 

the solutions was measured at the following emission wavelength: 

Eu II 381.967 nm. Morphology of the nanostructures was 

characterized by transmission electron microscopy (TEM) and by 

field emission scanning electron microscopy (FE-SEM). TEM 

characterization was conducted on Philips CM 300 microscope 

operating at 300 kV. The SEM measurements were carried out on a 

Tescan MIRA3 field emission gun, at 10 - 20 kV in high vacuum. SEM 

working distance was between 3.3 and 4 mm. Room temperature 

micro-Raman spectra of Pr1-xEux(OH)3 nanostructures were excited 

using solid state Nd:YAG laser line of 514 nm. Low laser power (~2 

mW) was applied to prevent thermal degradation of the sample. Tri 

Vista 557 triple spectrometer coupled to the nitrogen‒cooled CCD 

detector was employed for spectra collection at room temperature. 

X-ray photoelectron spectroscopy (XPS) measurements were 

performed using the PHI ESCA system equipped with a non-

monochromatic Al X-ray source (1486.6 eV) with a hemispherical 

analyzer. The infrared transmission spectra (IR) were obtained on a 

Thermo Nicolet 6700 Fourier transform infrared spectrophotometer 

at room temperature. Diffuse reflectance spectra (DRS) were 

acquired using the Specord M40 Carl Zeiss spectrometer. Room 

temperature PL measurements were performed on a Spex 

Fluorolog spectrofluorometer using 340 nm excitation wavelength. 
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Photodegradation tests 

The photocatalytic activity of Pr1-xEux(OH)3 nanostructures under 

UV light irradiation was evaluated by monitoring the decomposition 

of reactive orange (RO16) as a model pollutant. Batch type 

experiments were performed in an open thermostated cell (at 25 

°C) equipped with a water circulating jacket to maintain the solution 

at room temperature. A mercury lamp (125 W) was used as a light 

source. The initial concentration of RO16 in an aqueous suspension 

was 50 mg/L and the working volume was 25 mL. Before the 

photocatalytic experiment, the cell was kept in dark for 60 min in 

order to achieve the adsorption-desorption equilibrium. At regular 

time intervals the aliquots were taken and the dye concentration 

was monitored by measuring the variation of the intensity of 

absorption peak at λmax = 494 nm, using a Varian Super Scan 3 UV-

vis spectrophotometer. The photocatalytic experiments were 

conducted at the natural pH of the RO16 dye (pH=4.7). In order to 

detect the formation of photogenerated hydroxyl radicals (OH•), 

photoluminescence (PL) measurements were performed using 

terephthalic acid, which is known to react with OH• radicals and 

produces highly fluorescent 2-hydroxyterephthalic acid. The 

experiment was conducted at ambient temperature and the 

photocatalyst was placed in an open thermostated cell filled with 

20 mL of the 5×10-4 mol L-1 terephthalic acid in a diluted NaOH 

aqueous solution with a  concentration  of 2×10-3 mol L-1. UV light 

source was used and a sampling was performed  after 5, 10 and 15 

min. PL spectra of the reaction solution, using excitation 

wavelength of 315 nm, were measured on a Spex Fluorolog 

spectrofluorometer system, following the changes of PL peak at 425 

nm for which the 2-hydroxyterephthalic acid exhibits intense PL 

peak.   

Results and discussion 

Structural characterization of obtained Pr1-xEux(OH)3 (x = 0, 0.01, 

0.03, 0.05) nanostructures was performed using XRD analysis and 

diffraction patterns are shown in Fig. 1. All diffraction peaks of as-

synthetized samples can be perfectly indexed to the hexagonal 

P63/m space group (ICSD Nº 200487 or JCPDS Nº 83-2304)13. 

Secondary peaks  (marked with (∗) on Fig. 1.) at 23.5 °, 33.9 ° and 

43.7 °, were detected in Eu−doped samples and ascribed to KNO3 

that was formed from the precursors14. Lattice parameters (a, c), 

 

 

 
 

Figure 1. . XRD patterns obtained for Pr1-xEux(OH)3 nanostructures 
(0≤x≤0.05).  

oxygen occupancy factor (Ooccup) calculated from the Rietveld 

refinement and the quality factors (Rexp and RBragg) of the 

refinement are summarized in Table 1.  
Positions of diffraction peaks assigned to KNO3 are marked with 

asterisks. The lattice parameters  slightly decreased with Eu doping 

due to the substitution of the larger Pr3+ ion (radii = 1.179 Å) by the 

smaller Eu3+ ion (radii = 1.12 Å)15, except for 3% Eu−doped sample. 

The decrease in Ooccup with Eu doping signifies an increase in oxygen 

vacancy content. From Table 1 it can be seen that 3% Eu−doped 

sample has the smallest Ooccup, i.e. the highest content of oxygen 

vacancies, the presence of which can be responsible for the 

observed lattice expansion in this sample16. In Table 1 are 

presented the BET specific surface area and the density of as-

synthesized samples. Obviously, the specific surface area (SBET) 

decreased in doped samples compared to the pure hydroxide, being 

the lowest in the 3% Eu−doped sample. 

The type of dopant and its incorporation influence the 

properties of the obtained materials to great extent, therefore it is 

important to determine precisely the amount of the incorporated 

Eu in Pr1-xEux(OH)3 (0.01≤x≤0.05) nanopowders. In that sense, ICP 

analysis was performed and has shown that the content of 

incorporated Eu is a bit lower than its nominal content for each 

doped sample (see Table 2). 

Table 1. Specific surface area (SBET), lattice parameter (a and c), oxygen occupancy factor (Ooccup) and density (ρ) of Pr1-xEux(OH)3 
nanostructures. 

Sample SBET 
(m2g-1) 

a (Å)a c(Å)a Ooccup
a
 ρ 

(gcm-3)a
 

Rexp 

(%) 
RBragg 

(%) 

Pr(OH)3 130.52 6.453(4) 3.769(9) 0.84(8) 4.45 11.6 6.0 

1% Eu 83.24 6.453(4) 3.768(9) 0.80(2) 4.39 12.6 7.0 

3% Eu 63.05 6.461(1) 3.769(0) 0.66(6) 4.22 13.0 8.5 

5% Eu 82.77 6.449(0) 3.763(4) 0.74(5) 4.34 11.9 6.0 
a.
 Calculated via Rietveld refinement 
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Table 2 Measured Eu content of Pr1-xEux(OH)3 nanostructures by 
ICP-OES. 

Sample Theoretical 
Eu content 

(mg/g) 

Measured 
Eu content 

(mg/g) 

Atomic 
concentration 

(%) 

Pr0.99Eu0.01(OH)3 7.91 6.45 0.82 

Pr0.97Eu0.03(OH)3            23.72 20.50 2.59 

Pr0.95Eu0.05(OH)3            39.48 32.64 4.13 

The morphology of pure and Eu−doped nanostructures was 

characterized by TEM and FE-SEM. In Fig. 2 are shown TEM images 

of pure and Eu−doped Pr(OH)3 nanostructures, whereas SEM 

images are shown in the Fig. S1 in the Supporting information. Pure 

Pr(OH)3 consists dominantly of well dispersed nanorods, with 

diameters ranging between 5 and 10 nm (Fig. 2(a)). With the 

increase of Eu dopant content, the morphology of the obtained 

nanomaterials changed and beside nanorods, the increasing 

presence of irregularly shaped grains that do not have nanorod 

morphology was also observed. This can be explained by the known 

fact that dopant atoms can change the crystallization directions and 

act as nucleation centers17, 18 thereby changing the resultant 

morphology of the sample. It is also worth to mention that in the 

case of 3% Eu−doped Pr(OH)3 sample two types of nanorods were 

formed – narrow ones with diameters in the range 7 - 15 nm 

(similar to pure Pr(OH)3) and wider ones, with diameters of the 

order of 50 nm (shown in the inset of Fig. S1(c)). 

The nature of Eu ions incorporation was further studied by Raman 

spectroscopy, through the analysis of the influence that Eu doping 

has on the vibrational properties of the starting material, Pr(OH)3. 

Crystal symmetry of Pr(OH)3 is hexagonal, with symmetry group 

P63/m, for which the group theory predicts 11 Raman active modes: 

4 Ag, 2 E1g and 5 E2g modes19, 20. In Fig. 3 are shown room 

temperature Raman spectra of pure and Eu−doped Pr(OH)3. Main 

Raman modes of Pr(OH)3 are present in the spectra of pure and 

doped samples and are positioned at energies: 140 cm-1 (peak 1), 

240 cm-1 (peak 2), 294 cm-1 (peak 3), 359 cm-1 (peak 4), 465 cm-1 

(peak 5). The modes positioned at 240 cm-1 and 294 cm-1 are 

ascribed to E1g and E2g lattice vibrations of OH- anion, whereas E2g 

lattice vibrational mode of heavier Pr3+ ions is positioned at lower 

energy of 140 cm-1. Libration frequencies of OH- atomic group are 

positioned at 359 cm-1 and 465 cm-1 (E2g and E1g modes)19, 20. Raman 

peaks 3, 4 and 5 shifted slightly to higher wavenumbers in 

Pr0.95Eu0.05(OH)3 spectrum, which can be explained by a certain 

degree of Eu substitutional incorporation onto Pr sites, as these 

peaks are positioned at higher wavenumbers in Eu(OH)3 compared 

to Pr(OH)3
20

 . Several low-frequency modes at: ~ 53 cm-1, ~ 85 cm-1, 

~ 107 cm-1, ~ 127 cm-1, and ~ 137 cm-1 are present in the Raman 

spectra of Eu−doped samples. These modes correspond to nitrates, 

either in the form of nitrate monohydrate layers interconnected 

with hydrogen bonds21, 22, or in the form of KNO3
23, 24, both of these 

compounds can be formed from unreacted nitrate ions originating 

from the precursor. Sharp Raman modes positioned at 715 cm-1 and 

 

Figure 2. TEM images of (a) Pr(OH)3, (b) Pr0.99Eu0.01(OH)3, (c) 

Pr0.97Eu0.03(OH)3, (d) Pr0.95Eu0.05(OH)3 nanostructures. In the insets 

are shown magnified images of individual nanorods. 

 
Figure 3. Room temperature Raman spectra of Pr1-xEux(OH)3 

nanostructures. 

1050 cm-1 correspond to the vibrations of NO3
– ions23, 24. Based on 

the results of Raman spectroscopy and having in mind X-ray 

diffraction results, we can conclude that some amount of crystalline 

KNO3 phase is present in Eu−doped Pr(OH)3 samples.  XPS 

measurements of Pr1-xEux(OH)3 samples enabled elucidation of 

changes in chemical composition and electronic structures with Eu 

doping and to determine the valence states of various species 

present in pure and doped samples. 

Figure 4(a) shows the survey XPS spectra of Pr1-xEux(OH)3 

samples whereas in Fig. 4(b) are shown Pr 3d, Eu 3d, O 1s and K 

2p/C 1s XPS spectra. Pr 3d spectra (Fig. 4(b), upper left) contain two 
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spin-orbit doublets, labeled c/c′ and b/b′, with approximate 

energies of 929/949 eV and 933/954 eV respectively. These 

doublets represent the 3d5/2 (c, b) and 3d3/2 (c′, b′) components of 

the Pr 3d spectra. An additional structure t is present in the 3d3/2 

component and can be explained by a multiplet effect. Doublets 

c/c′ and b/b′ are found both in Pr4+ and Pr3+ so they cannot be used 

to distinguish between these two valence states of Pr. Small peaks, 

observed at ~ 923 eV and ~ 943 eV, identified as X-ray satellites, 

originate from non-monochromatic X-ray source. From the Eu 3d 

spectra (Fig. 4(b), upper right) we can see that components Eu 3d5/2 

and 3d3/2 are positioned at ~ 1134.7 eV and ~ 1164 eV. These values 

correspond to Eu3+ valence state. When compared to the literature 

values for Eu2O3 (1133.7)25 Eu(OH)3 (1134.3)26 and Eu(NO3)3 

(1136.4)25 it can be seen that these peaks are closest to those of 

Eu(OH)3 which confirms substitutional incorporation of Eu3+ and the 

absence of europium oxide/nitrate. One evidence more that Eu2O3 

is not present in these samples is the fact that strong Raman mode 

of Eu2O3 at ~ 330 cm-1 was not registered in the Raman spectra. K 2p 

states are particularly prominent in 1% and 3% Eu – doped samples 

(see Fig. 4(b)) and originate from KNO3 phase, already seen in the 

XRD and Raman spectra of doped samples. Low intensity C 1s peak 

(see Fig. 4(b)) originates from surface impurity carbons, whereas 

N1s states are characterized by very low intensity peaks visible in 

the survey XPS spectra. O 1s peaks of Pr1-xEux(OH)3 samples from 

Fig. 4(c) are asymmetric and have been  deconvoluted into three 

components, positioned at ~ 529 eV, ~ 531 eV and ~ 532 eV, 

respectively. Vertical dashed lines shown in Fig. 4(c) indicate the 

binding energy (BE) position of the three components. The latter 

two are generally ascribed to lattice oxygen and adsorbed -OH 

groups, possibly from water25-27, whereas the peak at ~ 529 eV can 

be ascribed to  the surface oxygen vacancies20. 

  

 

Figure 4. XPS spectra of Pr1-xEux(OH)3 nanostructures: (a) survey spectra (b) high-resolution spectra of Pr 3d, Eu 3d, O 1s and K 2p/C 1s 

regions and (c) deconvolution of O 1s region into three peaks.  

Table 3. Elemental composition of Pr(OH)3, pure and Eu−doped as 

determined by XPS 

Sample Atomic concentration %  

 Pr O Eu Eu/(Eu+Pr) vacancy/lattice 

Pr(OH)3 24.501 75.499 0.000  0.16 

1% Eu 21.674 77.846 0.480 2 % 0.20 

3% Eu 19.189 78.369 2.441 11.3 % 0.22 

5% Eu 21.213 75.030 3.757 15 % 0.26 

 

Elemental composition of the investigated samples, obtained by 

XPS measurements is represented in the Table 3. The following 

atomic concentrations, shown in Table 3, were obtained 

considering the sensitivity factors of PHI (Physical Electronics) and 

the peak features of Pr (3d5/2), O (1s) and Eu (3d5/2) from Fig. 4. It 

can be noticed, that relative atomic concentrations of Eu, calculated 

as Eu/(Eu+Pr) were higher than nominal stoichiometric 

concentrations of this element. This can be a consequence of the 

segregation of dopant atoms on the materials surface, already 

registered by XPS in other rare earths nanocomposites28. This 

finding suggests that Eu3+ ions are segregated at the surfaces of  
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Figure 5. (a) IR transmission spectra and (b) Normalized IR spectra 

of pure and Eu−doped Pr(OH)3 nanostructures. 

 

nanocrystals but mostly connected to oxygen ions as deduced from 

the Eu 3d binding energies. From the peak area fitting data of the 

components which belong to lattice oxygen and oxygen vacancies, 

we have calculated the oxygen molar ratio reported in Table 3 as 

well. Although XPS provides information about surface 

stoichiometry, the obtained ratio is in agreement with XRD results 

(see Table 1) confirming that Eu-doped samples are more oxygen 

deficient. 

Infrared spectroscopy (IR) was employed to evidence the presence 

of -OH groups as well as other organic and inorganic species. IR 

transmission spectra of pure and Eu−doped Pr(OH)3, obtained in 

the range 500-4000 cm-1 are shown in Fig. 5. Peak at 670 cm-1 

represents Pr-O-H lattice vibration13, 20. 

Prominent broad peaks at 1382 cm-1 and 1505 cm-1 belong to 

symmetric and asymmetric COO- vibrations29, due to adsorbed 

carbon species. Another sharp peak at 1385 cm-1, of much higher 

intensity in the spectra of doped samples, is observed. The sharp 

peak can be ascribed to NO3
− vibrations30 together with the 

observed low-intensity peak at ~ 828 cm-1, which also corresponds 

to NO3
− vibrations and is present only in doped samples30. The 

intensity of sharp peak (1385 cm-1) is very high in 1% Eu – doped 

sample and decreases with the increase of dopant concentration, as 

shown in the normalized IR spectra from Fig. 5 (b) (normalized to  

 

Figure 6. (a) Absorption spectra and (b) Tauc plots of (Ahν)1/2 vs. 

(hν) for Pr1-xEux(OH)3 nanostructures. 

 

Pr-OH vibration peak), which is in agreement with XPS K 2p spectra 

of pure and doped samples. Another sharp peak at 3600 cm-1 

represents the vibrations of OH- groups from Pr(OH)3/Eu(OH)3 

whereas broad peak at 3400 cm-1 corresponds to delocalized OH- 

vibrations from adsorbed H2O on the sample surface29, 31.  

UV-vis absorption spectra of Pr1-xEux(OH)3 are presented in the 

Fig. 6(a). Strong absorption band can be observed in the region 

below 270 nm, corresponding to the band gap, and is shifted to 

lower wavelength for Eu−doped samples compared to Pr(OH)3 

spectrum. Several sharper peaks at: 446 nm, 462 nm, 470 nm, 583 

nm and 591-597 nm, represent Pr3+ electronic transitions. These 

peaks were observed in both pure and doped samples. 

There are no peaks which can be ascribed to interband 4f-4f 

Eu3+ electronic transitions, due to the fact that the doping 

percentage is low. Another very broad absorption peak at ~ 340 nm 

can be ascribed to the formation of oxygen-vacancy impurity levels 

within the gap. These states are already seen in the defective 

La(OH)3 nanorods (absorption around 280 nm) and were ascribed to 

the surface oxygen vacancy states formed during the synthesis 

process3. 

From the absorption spectra from Fig. 6(a), applying absorption 

spectra fitting method for indirect electronic transitions 32, the band 

gap of these materials was estimated. In Fig. 6(b) are presented the 
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Tauc plots 33 for indirect transition for Pr1-xEux(OH)3 samples. It was 

deduced that the pure Pr(OH)3 band gap of ~ 4.78 eV is shifted to 

~ 4.5 eV in Pr0.99Eu0.01(OH)3 and Pr0.97Eu0.03(OH)3, whereas it 

increases again in Pr0.95Eu0.05(OH)3 approaching the Pr(OH)3 value. 

The lower gap of 1% and 3% Eu−doped samples can be explained by 

the presence of higher amount of KNO3 phase in these samples 

which has lower gap14, 34 compared to Pr(OH)3.  

In order to probe intraband defect states, PL measurements 

were performed using 340 nm excitation line with the purpose of 

exciting the states corresponding to the broad peak centered at 340 

nm in the absorption spectra (see Fig. 6(a)). PL spectra of 

Pr1-xEux(OH)3 samples shown in Fig. S2 consist of an intense PL peak 

centered at 430 nm and several lower intensity Pr3+ emission peaks 

red-shifted compared to their counterparts in absorption spectra. 

The characteristic Eu3+ peaks are not seen, because of the presence 

of hydroxyl groups which act as luminescence quenching centers 

and can increase non-radiative processes35.  The intensive blue 

emission peak can be attributed to the deep level oxygen vacancy 

defect states and originates from the recombination of an electron 

occupying the vacancy and photogenerated holes3, 36. The intensity 

of this peak is increased in 3% and 5% Eu-doped samples. This is in 

accordance with XPS and XRD results from which was obtained that 

oxygen deficiency increased with increased Eu content. 

Although the determined band gap values of Pr1-xEux(OH)3 

nanostructures are relatively high, the sub band gap state observed 

from PL and UV-vis absorption spectra (see Figs. 6 (a) and S2) allows 

for these structures to be tested as potential photocatalysts in the 

UV region. Therefore, the photocatalytic degradation of RO16 dye 

was tested for Pr1-xEux(OH)3 nanostructures under UV light. 

The kinetics of the degradation of RO16 under UV light is shown 

in Fig. 7(a). It is obvious that RO16 can be effectively removed by 

Pr1-xEux(OH)3 nanostructures. Pure Pr(OH)3 sample showed 

moderate adsorption in the dark and its photocatalytic removal 

efficiency was more than 90% after 180 minutes. Pronounced 

adsorption, in the equilibrium period of 60 min before the exposure 

to UV light, was seen in the 3% Eu−doped sample. On the contrary 

1% and 5% Eu−doped samples showed no adsorption. The iso-

electric point of a photocatalyst influences the adsorption process 

in great extent. Therefore, the zeta potentials for pure, 1% and 3% 

Eu−doped Pr(OH)3 (shown in Fig. 8(b)), were measured in the pH 

range 2.0-12.0 and the iso-electric points for these samples were 

8.2, 7.6 and 8.8 respectively. At pH=4.7 which was the natural pH 

value of the solution, the surface charge of the catalysts is positive 

in the following order: 3% Eu > Pr(OH)3 > 1% Eu. As RO16 dye 

molecule is negatively charged the best adsorption is expected in 

3% Eu−doped sample due to the stronger electrostatic interaction 

between the adsorbent and the adsorbate, little weaker adsorption 

is expected in Pr(OH)3 and the lowest in 1% Eu−doped Pr(OH)3 

sample. This is in good agreement with the experimental results. 

The changes in morphology of 3% Eu−doped Pr(OH)3 (existence of 

two types of nanorods with diameters of the orders of magnitude 

~ 10 nm and ~ 50 nm from Fig. S1(c)) and increased amount of 

oxygen vacancies (deduced from Rietveld analysis) in this sample 

can be additional reason for enhanced adsorption. 

 

Figure 7. (a) Degradation of RO16 dye under UV light in the 

presence of pure and Eu−doped Pr(OH)3 nanostructures and (b) 

first–order reaction kinetics and constant k values. 

 

Eu−doped Pr(OH)3 nanostructures exhibited much faster removal 

efficiency than pure Pr(OH)3 and exhibited faster dye removal at the 

beginning of the reaction time (Fig. 7(a)). Rapid removal of RO16 

was observed in the first 30 minutes and after 70 minutes dye was 

almost completely removed. Under similar conditions, Eu−doped 

Pr(OH)3 nanostructures demonstrated even better photocatalytic 

activity than Degussa 37, 38. Photocatalytic degradation of RO16 

followed first–order kinetics (Fig. 7(b)), expressed by equation 

ln(C/Co)=kt, where Co is the initial dye concentration and C is the 

dye concentration at time t. The first–order rate constant k values, 

given by the slope of  ln(C/Co) vs. t, for Pr1-xEux(OH)3 samples are 

presented in Fig. 7(b). It can be deduced that Eu−doped samples 

have significantly higher k values than pure Pr(OH)3, confirming that 

these samples are better photocatalysts than pure Pr(OH)3 sample. 

XRD, XPS and UV-vis absorption spectra revealed that Pr1-xEux(OH)3 

samples are oxygen deficient. Additionally, XRD results confirmed 

that the oxygen deficiency increases with Eu doping. XPS 

measurements suggested high segregation of Eu ions on the surface 

of doped nanostructures. The presence of lattice defects like 

oxygen vacancies (VO) and Eu3+ ions, especially on the surface of 

Eu–doped nanostructures, can influence in great extent the 

photocatalytic activity of Pr1-xEux(OH)3 samples.  

Photo-generated electrons or holes can be captured by VO, 

which form impurity levels inside the gap and serve as charge 

carrier traps suppressing the e-h recombination process39. On the 

other hand, the vacancies facilitate charge transfer to adsorption  
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Figure 8. (a) PL spectral changes observed during UV illumination of 

Pr0.95Eu0.05(OH)3 sample in the solution of terephthalic acid after 5, 

10 and 15 min. (b) Zeta potential dependence on pH value for pure, 

1% and 3% Eu−doped Pr(OH)3. 

 

species on the catalyst surface like O2 or H2O forming reactive 

radicals (superoxide radical (•O2
−) or OH•), the existence of which is 

important for fast and successful photocatalytic degradation of 

organic dyes. It is well documented that at the surface of oxide 

nanostructures like TiO2 or CeO2, water dissociation takes place 

exclusively on oxygen vacancy defect sites where every surface VO 

enables formation of two hydroxyl groups40-43. The infrared study of 

Pr1-xEux(OH)3 nanostructures confirmed the presence of hydroxyl 

groups from water. 

The formation of OH• radicals was tested on the surface of 

Pr0.95Eu0.05(OH)3 photocatalyst under UV irradiation and detected by 

PL method.  PL spectra of the reaction solution were measured at 

room temperature and these spectra are presented in Fig. 8(a). The 

terephthalic acid reacts with OH• radicals producing 

2-hydroxyterephthalic acid, which exhibits PL peak at 425 nm44. The 

intensity of this peak is proportional to the amount of OH• radicals 

produced in solution44, 45. As can be seen from Fig. 8(a), substantial 

increase of the intensity of 425 nm peak with prolonged 

illumination time points to the increasing amount of OH• radicals 

produced at the surface of Pr0.95Eu0.05(OH)3 sample. 

The existence of surface and subsurface vacancies also enables 

better adsorption of O2 which can capture photogenerated 

electrons or electrons located on VO, producing  superoxide radical 

groups41, 46. In addition to this, due to high oxidative potential of the  

 

Fig. 9 Illustration of the photocatalytic mechanism of Eu−doped 

Pr(OH)3 under the UV light irradiation. 

 

holes, holes can directly attack the dye leading to its oxidation (h+ + 

dye → dye•+ → oxidadon of the dye). On the other side, the 

photogenerated holes can easily react with surface bound H2O or 

hydroxyls (OH-) forming hydroxyl radicals (OH•). Although similar 

studies, to the best of our knowledge, were not performed for 

Pr(OH)3 nanostructures, it is reasonable to assume that oxygen 

vacancies have important role in the photocatalytic process at the 

Pr1-xEux(OH)3 surface. Furthermore, recent papers of Dong et al.3 

and Wang et al.11 aimed at investigation of photocatalytic 

properties of defective La(OH)3 nanorods and La(OH)3 nanorods 

doped with 4f elements, demonstrated the crucial role of oxygen 

vacancies in the photocatalytic degradation of dyes and strongly 

supports our findings. The oxygen vacancy states in the band gap 

were registered by PL and absorption measurements.  

On the other hand, Eu3+ ions are often used as dopants that can 

prevent quick recombination of photogenerated electrons and 

holes because they create surface states that present a barrier for 

electrons47. The emission from these states was not observed in PL 

spectra excited with 340 nm, probably due to OH bond quenching, 

but since Eu3+ states were registered by XPS, they can be 

responsible for the enhanced photocatalytic activity of Eu−doped 

nanostructures due to the mentioned electron trapping effect. 

In the recent paper of Mahlalela et al. it was demonstrated that 

TiO2 nanoparticles exhibited enhanced photocatalytic activity in the 

presence of KNO3. This was ascribed to the increased production of 

hydroxyl radicals due to the presence of NO3
− anions. The direct 

photolysis of nitrate ions (NO3
−) during irradiation with λ>280 nm 

can result in the formation of NO2
•  and •O− radicals. In the presence 

of water, •O− radicals can be protonated giving hydroxyl radicals 

OH• and OH− ions according to the following reaction48: 

(NO3
−

 )		
�ν

→	(NO3
−)∗→ NO2

• + •O− + H2O → NO2
• + •OH + OH−  (1) 

Page 8 of 10Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

View Article Online
DOI: 10.1039/C7CP06440C

http://dx.doi.org/10.1039/c7cp06440c


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

In such a way the concentration of OH• radicals is increased 

enhancing the photodegradation of the dyes. On the other hand 

nitrate ions are good acceptors of photoinduced electrons forming 

nitrogen trioxide anion radicals (•NO3
2−). These radicals in reaction 

with water form powerful nitrogen dioxide (NO2
•) anions, which are 

capable of oxidizing the dyes48.  

XPS, XRD and Raman analysis confirmed the presence of KNO3 

phase in Eu-doped samples. The presence of NO3
− ions  at the 

surface of doped samples can additionally improve their 

photocatalytic properties due to the mentioned radical formation.  

Considering all previously mentioned, a mechanism of 

photocatalytic reactions in Eu/doped Pr(OH)3 is proposed and 

presented in Fig. 9.  

Photocatalytic stability was tested on the Pr0.95Eu0.05(OH)3 

sample. Fig. S3 shows the repeated photocatalytic runs under the 

UV light irradiation. Although there was a certain drop in efficiency 

in the second run, these results indicated that Eu−doped Pr(OH)3 

catalysts are stable after the second run. The drop in the efficiency 

after the first run is ascribed to the adsorbed dye molecules and 

reduction of number of active sites since the catalyst is recycled by 

centrifugation and deionized water washing, without additional 

chemical treatment. 

Therefore enhanced photocatalytic activity of Eu−doped 

Pr(OH)3 nanostructures can be explained by the presence of oxygen 

vacancies, Eu3+ trapping states and KNO3−mediated hydroxyl radical 

production at the surface of our samples. Synergy of these three 

factors resulted in efficient separation of photogenerated electrons 

and holes and their transfer to adsorbed species at the surface 

enabling excessive formation of reactive radicals and efficient dye 

degradation. 

This work provides new insight into the role of oxygen 

vacancies, 4f dopants and proper choice of alkaline metal 

hydroxides in promoting photocatalytic efficiency of Pr(OH)3. Our 

future work will be dedicated to the investigation of other 4f 

dopants influence on morphology, electronic structure and 

photocatalytic performances of Pr(OH)3 nanostructures. 

Conclusions 

In summary, defective Pr1-xEux(OH)3 nanostructures were 

synthesized by simple microwave-assisted hydrothermal method 

and comprehensive characterization has been performed by XRD, 

XPS, ICP-OES, FE-SEM, Raman, IR and DR spectroscopy. It was found 

that Eu3+ doping promotes the formation of oxygen vacancies and 

changes the morphology of Pr(OH)3 nanorods. Eu3+ ions have a 

tendency to segregate at the nanostructure’s surface as well. 

Furthermore, the presence of KNO3 phase is registered in doped 

samples. Eu−doped nanostructures exhibit excellent photocatalytic 

activity towards the photodegradation of an azo dye compared to 

pure Pr(OH)3 nanorods. Oxygen vacancies, change of morphology 

and presence of  Eu3+ and NO3
− ions  at the Pr(OH)3 surface play 

significant role in improving the  photocatalytic properties of 

Pr(OH)3 nanostructures. The enhanced photocatalytic activity of 

Pr1-xEux(OH)3 nanostructures  originates from combined effect of 

oxygen vacancies and Eu3+ ions,  which act as trapping centres 

enabling at the same time facile charge transfer to adsorption 

species. In such a way fast electron hole recombination can be 

suppressed and more reactive radicals can be formed. The presence 

of KNO3 phase in Pr1-xEux(OH)3 samples additionally improves the 

photocatalytic performances of Pr(OH)3 nanostructures, i.e. the 

presence of  NO3
− ions  can enhance the production of NO2

• and OH• 

radicals.  Furthermore, 3% Eu−doped sample exhibited very good 

adsorption properties due to higher electrostatic attraction of 

anionic dye and different morphology compared the rest of the 

samples. The possibility of tuning the ratio of photocatalytic versus 

adsorptive activity of Eu−doped Pr(OH)3 nanostructures makes 

them desirable for environmental applications. 
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