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Abstract 

The objective of this study was to stimulate microbial biodegradation of petroleum pollution in groundwater and 

to analyze changes in the abundance and distribution of organic compounds detectable in petroleum. 

Bioremediation was conducted in a closed bipolar system, by bioaugmentation with consortia of hydrocarbon 

degrading microorganisms (HD) and biostimulation with nutrients. Comprehensive two-dimensional gas 

chromatography–mass spectrometry (GC×GC–MS) was used to visualize all fractions simultaneously. During 

the study, the content of total petroleum hydrocarbon (TPH) in groundwater decreased by 92.7% of the initial 

level, and the average rate of biodegradation was 0.1 mg/L per day. Increased numbers of HD were observed 

and the dominant genera were Pseudomonas, Rhodococcus, Achromobacter, Bacillus, and Micromonospora. In 

the first 30 days of bioremediation, there was no significant biodegradation of n-alkanes and petroleum 

biomarkers - isoprenoids such as pristane and phytane, and polycyclic saturated hydrocarbons such as terpanes 

and steranes. However, after 60 days of bioremediation, more than 95% of n-alkanes, terpanes and steranes were 

biodegraded. Phenanthrene and its methyl-, dimethyl-, and trimethyl-isomers were biodegraded and reduced by 

more than 99% of their initial levels. However, their decomposition had clearly commenced after just 30 days. 

This is a somewhat surprising result since it follows that the phenanthrenes were more susceptible to 

biodegradation than the n-alkanes and isoprenoids. Depending on the microbial community used for 

bioaugmentation, biodegradation of phenanthrene can preceded biodegradation of saturated hydrocarbons.  
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1 Introduction 

Organic geochemical studies of the biodegradability of some classes of organic compounds from oil have shown 

that n-alkanes and isoprenoid aliphatic alkanes are the most susceptible to biodegradation [1, 2]. Among the oil 

compounds, the most resistant to microbial biodegradation are monoaromatic steroids, diasteranes, diahopanes, 

25-norhopanes, tricyclic terpanes, C21--C22 steranes, oleanane and gammacerane. Very close to them, by 

resistance to biodegradation, are the C27--C35 hopanes and C27--C29 regular steranes [3]. Research on microbial 

biodegradation of oil pollutants has shown that these trends are similar in the environment [4, 5]. 

Bioremediation is a process which can use either naturally occurring autochthonous microorganisms which are 

isolated from a particular polluted place to be treated by bioremediation, or allochthonous microorganisms 

isolated from other polluted habitats. However, it is known that autochthonous microorganisms are much more 

potent and with a higher survivability rate compared to allochthonous microorganisms [5]. The zymogenous 

fraction of autochthonous microorganisms exhibits the highest activity toward transformation of the pollutants 

present [6]. Through their normal life functions, biodegradation or complete mineralization of hazardous organic 

substances can occur. To date, bioremediation has been proven to be efficient in the removal of oil hydrocarbons 

[7], polychlorinated biphenyls [8], polycyclic aromatic hydrocarbons (PAH) [9], pesticides [10], some heavy 

metals [11] and even radionucleotides [12]. The result of bioremediation of oil pollutants in the environment is 

usually assessed on the basis of differences in the total petroleum hydrocarbons (TPH) content before and after 

the process.  

In studies of simulated biodegradation using a zymogenous microbial consortium (microorganisms isolated 

from a site exposed to a longer period of oil pollution), on one paraffinic crude oil, on different media and under 

different conditions, biodegradation of n-alkanes and isoprenoid aliphatic alkanes, pristane (C19) and phytane 

(C20) occurred [13]. This biodegradation was the most intense when the inorganic media were used and 

experiments were performed in the light [13]. However, polycyclic alkanes of the sterane (C27--C29) and terpane 

(C27--C34) types, oleanane and gammacerane remained non-degraded [13]. The same conclusion was drawn after 

simulated biodegradation of a paraffin oil by a consortium of zymogenous bacteria and fungi over a period of 75 

days [14]. After decomposition of n-alkanes and isoprenoids, the abundance and distribution of steranes and 

terpanes remained unchanged [14]. Biodegradation of isoprenoids, steranes and terpanes was recently confirmed 

during ex situ bioremediation of mazut on an industrial level using consortia of zymogenous microorganisms 

[4]. 

The current study attempted to conduct a more efficient decomposition of those compounds from oil pollutants 

that have proved to be, in earlier attempts of simulated biodegradation in the laboratory, the most resistant to the 

action of zymogenous microorganisms. To this end, an in situ biodegradation process was applied to 

groundwater contaminated by oil pollutants. In the current study, detailed characterization of the biomarkers in 

petroleum pollutant extracted from groundwater [15] was conducted and two instrumental techniques were 

applied: comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC-MS) and GC-MS. 

GC×GC-MS is suitable for the determination of various organic pollutants in complex environmental matrices 

[16] and in complex mixtures [17, 18], and it involves the separation of compounds by two orthogonal GC 

columns [19, 20]. This technique was applied to analyze groundwater extracts before, during and after 

bioremediation for easy visualization of changes in the abundance of the chosen biomarkers/contaminants. 
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2 Materials and methods 

2.1 Site description and bioremediation methodology 

The investigated area was located in the industrial complex Nitex, in the city of Niš, on the terrace sediments of 

the Nišava River, Serbia. The aquifer at this location was proven to be contaminated by petroleum hydrocarbons 

from an underground storage tank. A detailed hydrogeological description of this locality was previously 

published [15].  

The typical in situ bioremediation process of groundwater requires biostimulation that encourages growth and 

reproduction of zymogenous microorganisms to metabolize target contaminants and use them as a source of 

carbon and energy [21]. The groundwater investigated in this study, which contained dissolved hydrocarbons 

and a floating layer of an oil pollutant, was treated with a filtration--adsorption remediation technique, using 

columns filled with natural inorganic hydrophobic adsorbents, and in situ bioremediation based on the principle 

of a bipolar model. Enhanced in situ bioremediation of groundwater and soil layers in contact with groundwater 

was performed by a combination of biostimulation and bioaugmentation within the closed bipolar system (one 

extraction and two injection wells), with adsorption in the external unit. This combination of methods is original 

and 1158 m3 of groundwater were treated through the system [15]. In this study, besides biostimulation (by 

addition of nutrients, nitrate and phosphate, and stimulation of oxidation processes by injection of H2O2, into the 

aquifer), bioaugmentation with consortia of zymogenous microorganisms isolated and selected from 

contaminated groundwater was applied. The biomass of zymogenous microorganisms was produced on-site in a 

mobile bioreactor previously described [15]. 

 

2.2 Microbiological and chemical analyses 

Selected members of the hydrocarbon degrading zymogenous consortia used for bioaugmentation were isolated 

based on morphological differences and identification of isolated strains was achieved by API tests (Biomeriex, 

France), and by sequence analysis of 16S rRNA genes. The API 50CH/E, API 20NE and Coryne kits were 

utilized in accordance with instruction from the manufacturer (Biomerieux, France). The data were interpreted 

using apiwebTM software. The genomic DNA of each bacterium was extracted [22] and the 16S rRNA genes 

were amplified by PCR using 27F (50-AGAGTTTGATCMTGGCTCAG-30 [23], and 1492R (50-

CGGCTACCTTGTTACGACTT-30 [24] primers. Amplified fragments were sequenced by a commercial 

service Macrogen Europe (Netherlands). Taxonomic analysis was conducted by the GenBank basic local 

alignment search tool (BLAST) program. 

The amount of TPH was determined according to the standard method, which includes solvent extraction 

followed by gravimetric determination and GC-MS. TPH from groundwater samples was extracted as per 

method ISO 9377-2 (2000) [25] and determined gravimetrically in accordance with DIN EN 14345 (2004) [26]. 

TPH was determined in groundwater on days 0, 30 and 60. 

The number of microorganisms in the groundwater was determined by plating appropriate serial dilutions on 

agar plates incubated at 28 °C. The media used were nutrient agar (15 g/L peptone, 3 g/L meat extract, 5 g/L 

NaCl, 0.3 g/L K2HPO4, 18 g/L agar; Torlak, Serbia) for total chemoorganoheterotrophs (TC) and mineral base 

medium (1 g/L NH4NO3, 0.25 g/L K2HPO4, 50 mL soil extract, 16 g/L agar) containing 2 g/L standard D2 diesel 

fuel for hydrocarbon degraders (HD), according to Bossert et al. [27]. 
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For GC×GC-MS analysis, TPH extracts were dissolved in n-hexane and analyzed directly using GC×GC-MS 

(GCMS-QP2010 Ultra, Shimadzu, Kyoto, Japan and GC×GC modulator, Zoex) in the form of a total ion 

chromatograms (TIC). An Rtx®-1 (RESTEK, Crossbond® 100% dimethyl polysiloxane, 30 m × 0.25 mm id, 

0.25 µm film thickness) and a BPX50 (SGE Analytical Science, 2.6 m × 0.1 mm id, df = 0.1 µm) column were 

connected through the GC×GC modulator as the first and second capillary columns, respectively. The MS data 

were collected with GCMSsolution (Ver. 4.11 & 4.2 update) (Shidmazu, Japan) and processed using GC-MS 

real time analysis program. The GC×GC-MS data were analyzed using GC Image Ver. 2.1 (Zoex), which is 

capable of directly reading GC×GC data obtained with GC-MSsolution software, converting it to a 2-

dimensional image. 

GC-MS was used for detailed analysis of n-alkanes, isoprenoids, terpanes, steranes, as well as phenanthrene and 

its methyl-, dimethyl- and trimethyl-isomers. For GC-MS analyses, an Agilent 7890N gas chromatograph fitted 

with a HP5-MS capillary column (30 × 0.25 mm, 0.25 µm film; oven temperature: 80 °C for 0 min, temperature 

increase by 2°C/min to 300°C and held for 20 min) with helium as the carrier gas (flow rate 1 mL/min) was 

used. Detailed analyses of the target compounds were conducted in the selected ion monitoring mode, 

comprising the following ion chromatograms: m/z = 71 (n-alkanes and isoprenoids), m/z = 191 (terpanes), m/z = 

217 (steranes), m/z = 178 (phenanthrene), m/z = 192 (methyl-phenanthrenes), m/z = 206 (dimethyl-

phenanthrenes) and m/z = 220 (trimethyl-phenanthrenes). 

In order to compare the changes in the distribution and abundances of selected target compounds, prior to the 

instrumental analyses, all groundwater TPH extracts were dissolved in the same volume of solvent (1 mL), and 

the same volume of each dissolved sample was injected into the instrument (1 µL). 

 

3 Results and discussion 

3.1 Isolation and taxonomic identification of the bacterial strains 

Bacterial HD strains (n = 8) were isolated from the zymogenous consortium of microorganisms used for 

bioaugmentation and subjected to detailed analysis. After inspection of colonies grown on nutrient agar and 

comparison of morphological, physiological and biochemical characteristics, these eight bacterial strains were 

determined as the predominant ones. Four of them were motile, Gram-negative rods, catalase and oxidase 

positive, out of which one produced a fluorescent pigment (NI-03) and the others did not (NI-01, NI-04 and NI-

07). The other four were Gram-positive, out of which two were nonsporulating, non-motile bacteria, oxidase 

negative, catalase positive (NI-02, NI-05) and two were spore-forming, catalase positive, one beta-hemolytic 

(NI-06) and one with branched mycelium (NI-08).   

According to physiological-biochemical properties (API tests), the HD bacteria were preliminarily identified as 

Pseudomonas sp. (NI-01, NI-03, NI-07), Rhodococcus sp. (NI-02, NI-05), Achromobacter sp. (NI-04), Bacillus 

sp. (NI-06) and Micromonospora sp. (NI-08). 

The final identification was performed by sequence analysis of the 16S ribosomal RNA gene. Isolated strains 

were identified as: NI-01: Pseudomonas aeruginosa (98%); NI-02 Rhodococcus rhodochrous (97%); NI-03 P. 

fluorescens (97%); NI-04 Achromobacter xylosoxidans (97%); NI-05: R. erythropolis (98%); NI-06: Bacillus 

cereus (98%); NI-07: P. aeruginosa (97%); NI-08 Micromonospora carbonacea (98%); sequence alignment 

identity values are given in the brackets. 
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3.2 Change in TPH content and number of microorganisms 

During two months of in situ bioremediation, the concentration of TPH was reduced by 92.7 %, from 6.8 mg/L 

to <0.5 mg/L, as previously published [15], which means that the average rate of biodegradation was 0.1 mg/L 

per day. 

Due to biostimulation and bioaugmentation using zymogenous consortium of microorganisms, the number of 

TC and HD microorganisms started to increase. The number of TC microorganisms increased from 10 000 

colony forming units (CFU)/mL at day 0 day, to 25 000 and 80 000 CFU/mL after 30 and 60 days, respectively. 

HD microorganisms reached their maximum population density after 30 days of activity (5000 and 15 000 

CFU/mL on days 0 and 30, respectively), and by the end of the process their number had decreased (3000 

CFU/mL). This decrease in concentration of HD microorganisms was very likely a result of depletion of oil 

hydrocarbons (the source of carbon for these microorganisms).  

 

3.3 Fate of individual hydrocarbons in the polluted groundwater - GC×GC-MS analysis 

The changes in the distribution and abundances of n-alkanes, isoprenoids, steranes, terpanes, phenanthrene, 

methyl-phenanthrenes, dimethyl-phenanthrenes and trimethyl-phenanthrenes were monitored by analyzing the 

extracts isolated from the samples by GC×GC-MS and GC-MS. 

TPH extracts before and after in situ bioremediation were analyzed using comprehensive GC×GC-MS and 

results as TIC are shown in Fig. 1. All fractions including n-alkanes, steranes, terpanes and phenanthrenes are 

marked on the chromatogram based on MS analysis and they were eluted following the elution protocol [17]. 

Important biomarkers in petroleum, terpanes co-elute with C28--C30 n-alkanes steranes with C26--C29 n-alkanes, 

and phenanthrenes with C17--C20 n-alkanes [17]. However, they can be found at different second-dimension 

retention times (Fig. 1). 

After 60 days of intensive biodegradation by the applied zymogenous microbial consortium, TPH was reduced 

to almost the background noise level of GC×GC, which can be seen from the 3D chromatograms (Fig. 1). The 

concentrations of all fractions of n-alkanes, steranes, terpanes, and phenanthrenes were reduced to the 

background level of GC×GC.  

The chromatograms showing hydrocarbons of the petroleum pollutant extracted from groundwater at the 

beginning of the study are given in Fig. 2, and the identification of the most important peaks is given in Table 1.  

In the alkane fraction, n-alkanes were characterized by bimodal distribution with peak maximums at C18 and 

C23. The bimodal distribution of n-alkanes suggests contamination by different oil pollutants. The isoprenoid 

aliphatic alkanes, pristane and phytane, were similar in abundance to n-C17 and n-C18 (Fig. 2; m/z = 71). This 

ratio of isoprenoids and n-alkanes shows that significant biodegradation of pollutants in natural conditions did 

not occur before the start of the study [3, 28]. 

Terpanes (m/z = 191) and steranes (m/z = 217) in the alkane fractions (Fig. 2) had distributions that are typical 

for crude oils [29]. The same can be said for phenanthrene and its methyl-isomers (Fig. 2; m/z = 178, 192, 206, 

220) [30].  

 

3.4 Changes in the distribution and abundance of hydrocarbons  

Changes in the distribution of n-alkanes and the isoprenoid aliphatic alkanes pristane and phytane during the 60-

day in situ bioremediation are given in Fig. 3.  
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At the beginning of the process, the alkanes n-C17 and n-C18 and the closely eluting isoprenoids, pristane and 

phytane, were present in similar concentrations. Comparing GC-MS chromatograms of n-alkanes in the 

hydrocarbon fraction after 30 days with the initial peaks at day 0, it is clear that n-alkanes lower than C21 were 

the most affected by the microorganisms and that the loss of the n-alkanes was mainly due to a decrease of 

homologues in the C15–C21 range. During the first 30 days, peaks for n-alkanes and isoprenoids did not reduce 

significantly (Fig. 3; days 0 and 30). However, in the second month of bioremediation, biodegradation of these 

compounds had occurred, and they remained only in trace amounts (Fig. 3; 60 days). Along with the very small, 

barely noticeable peaks belonging to pristane and phytane, peaks for n-C17 and n-C18 were observed to have the 

same intensity (Fig. 3). This is evidence that the microbial biodegradation of n-alkanes and isoprenoids occurred 

at the same speed.  

Changes in the distribution and abundance of tricyclic diterpanes and pentacyclic terpanes in alkane fractions of 

the petroleum pollutant extracted from groundwater during the 60-day in situ bioremediation are given in Fig. 4. 

In the first 30 days, there was no significant change in abundance or distribution of tricyclic diterpanes or 

pentacyclic terpanes, based on the almost identical fragmentograms of m/z = 191 shown in Fig. 4 (days 0 and 

30). It is well known that polycyclic alkanes of the sterane and terpane types in crude oils in the subsurface are 

decomposed by biodegradation after the degradation of acyclic hydrocarbons [28]. Furthermore, it has also been 

shown that crude oil biodegradation under aerobic conditions can follow completely different sequences than oil 

in reservoir rocks [31]. In addition, it was reported that under laboratory conditions, sterane and terpane 

biomarkers were not affected by biodegradation and that the biodegradation of saturated hydrocarbons was 

restricted to the acyclic aliphatic compounds (n-alkanes and isoprenoids) [32]. However, in the present study, 

zymogenous microbial consortia in a non-sterile, open system on an industrial scale was applied, leading to 

complete biodegradation of these polycyclic hydrocarbons as well as n-alkanes and isoprenoids, as a result of 

microbial activity in the second month (Fig. 4; 60 days). Only traces of C27 – 18α (H)-22,29,30-trisnorhopane 

(Ts) and C27 – 17α(H)-22,29,30-trisnorhopane (Tm) remained, as these had been the most abundant at the 

beginning of the bioremediation process.  

An almost identical trend was confirmed for biodegradation of steranes (Fig. 5). In the first 30 days, the sterane 

abundance did not significantly change (Fig. 5; days 0 and 30), while at the end of the study, peaks originating 

from steranes were barely distinguishable from background peaks in the GC-MS analysis (Fig. 5; 60 days).  

Recently, it was reported that successful in situ biostimulation of petroleum hydrocarbon biodegradation without 

bioaugmentation but by nitrate and phosphate injection was conducted, in which dissolved hydrocarbon 

concentrations including benzene decreased to non-detectable levels in less than three months [33]. However, 

according to present knowledge it is clear that biostimulation and bioaugmentation can have a synergistic effect 

on the bioremediation process.   

The biodegradation of crude oil is often viewed as a stepwise process in which various compounds are 

removed/reduced in an organized and recognized sequence [32]. However, several compound classes are 

destroyed simultaneously but at different rates. This reflects differences in the rate of their catabolism under 

varying conditions [34]. In reservoir oils, studies have shown that polycyclic aromatic compounds such as 

phenanthrenes cannot be degraded prior to or concomitantly with sterane and terpane biomarkers [35]. It is also 

important to emphasize that many compounds can be degraded only by co-metabolism [36, 37]. However, based 

on the literature, after 75 days of simulated microbial biodegradation by zymogenous microorganisms, 
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phenanthrene and methyl phenanthrenes were degraded in polluted soil, while steranes and triterpanes retained 

their original abundance and distribution [32]. This suggests that polycyclic alkanes, steranes and triterpenes 

showed higher resistance toward biodegradation by zymogenous microorganisms compared with phenanthrene 

and its methyl-isomers. In natural bioremediation conditions, biodegradation of dimethyl-, and especially 

trimethyl-phenanthrene is slower in comparison with phenanthrene. In contrast, if bioremediation is carried out 

by bioaugmentation and biostimulation, with the addition of sawdust and biosurfactants, trimethyl- and 

dimethyl-phenanthrenes are degraded much faster than phenanthrene [30]. It was also confirmed that during 

natural ex situ bioremediation, phenanthrene and its methyl-isomers were degraded before complete 

decomposition of n-alkanes [38] and this is in line with results presented in this paper. 

In comparison with the n-alkanes, isoprenoids, terpanes and steranes, biodegradation of phenanthrene and its 

methyl-, dimethyl- and trimethyl-isomers (Fig. 6), followed a different pattern. In fact, only these hydrocarbons 

underwent changes after the first 30 days of bioremediation. The intensity of these peaks after 30 days was 

significantly lower than the intensity of the corresponding peaks on day 0 (Fig. 6). At the end of the study, all 

these hydrocarbons (phenanthrene and its methyl-, dimethyl- and trimethyl-isomers) were degraded by more 

than 99% of their initial levels (Fig. 6; 60 days). This result is consistent with current knowledge, according to 

which phenanthrene compounds are more susceptible to biodegradation than polycyclic alkanes such as terpanes 

and steranes in environmental conditions during oil spills [39]. However, it is still somewhat surprising, since it 

follows that these aromatic phenanthrene compounds were more susceptible to biodegradation than the n-

alkanes and isoprenoid aliphatic alkanes (Fig. 3), which is contrary to the generally accepted knowledge about 

biodegradability of petroleum compounds [3]. 

 

4 Concluding remarks 

This study describes enhanced in situ bioremediation of groundwater contaminated by petroleum hydrocarbons. 

The efficiency of bioremediation was evaluated on the basis of changes in the content of TPH, TC and HD 

microorganisms, as well as on the basis of changes in the abundance and distribution of n-alkanes, isoprenoids, 

terpanes, steranes and phenanthrene and its methyl-, dimethyl- and trimethyl-isomers.  

During bioremediation, the TPH content in groundwater was reduced dramatically. At the same time, the 

numbers of TC and HD microorganisms increased substantially. In the first 30 days of bioremediation, there 

was no significant biodegradation of n-alkanes, pristane, phytane, terpanes or steranes. However, after 60 days 

of bioremediation, saturated hydrocarbons, including alkanes and polycyclic-type steranes and terpanes, were 

biodegraded and reduced for more than 95% of their initial levels, which was not observed in a previous study 

of ex situ bioremediation. Interestingly, phenanthrene and its methyl-, dimethyl-, and trimethyl isomers were 

biodegraded and reduced for >99% of their initial levels after 60 days. However, their decomposition had 

clearly commenced after just 30 days. This is a somewhat surprising result, since it follows that the PAH, such 

as phenanthrene, were more susceptible to biodegradation than the n-alkanes and isoprenoid aliphatic alkanes. 

This is in contrast with generally accepted knowledge about the biodegradability of petroleum compounds. This 

suggests that utilization of a well-selected microbial community for bioaugmentation may stimulate 

biodegradation of some PAH such that it could precede biodegradation of saturated hydrocarbons. All these 

factors and results together provide evidence of the high efficiency of the applied method for removing oil 

pollutants from contaminated water by an in situ bioremediation treatment in a closed bipolar system. 
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Fig. 1 GC×GC-MS 3D chromatograms of groundwater extracts before (day 0) and after (60 days) in situ 

bioremediation 

Fig. 2 Distribution and abundances of n-alkanes and the isoprenoid aliphatic alkanes (pristane and phytane) (m/z 

= 71); terpanes (m/z = 191); steranes (m/z = 217); phenanthrene (and its methyl-, dimethyl- and trimethyl-

isomers) (m/z = 178 + 192 + 206 + 220); at the beginning of the study (day 0) 

Fig. 3 Changes in the distribution and abundance of n-alkanes and isoprenoid aliphatic alkanes pristane (Pr) and 

phytane (Phyt) during the 60-day in situ bioremediation 

Fig. 4 Changes in the distribution and abundance of tricyclic diterpanes and pentacyclic terpanes in alkane 

fractions of the petroleum pollutant extracted from groundwater during the 60-day in situ bioremediation 

Fig. 5 Changes in the distribution and abundance of diasteranes and C27--C29 steranes in alkane fractions of the 

petroleum pollutant extracted from groundwater during the 60-day in situ bioremediation 

Fig. 6 Changes in the distribution and abundance of phenanthrene and its methyl-, dimethyl- and trimethyl-

isomers in the aromatic fractions of the petroleum pollutant extracted from groundwater during the 60-day in 

situ bioremediation 

 

 

 

Table 1. Ion chromatogram characteristic for n-alkanes and isoprenoid aliphatic alkanes (m/z = 71), terpanes 

(m/z = 191), steranes (m/z = 217), phenanthrenes (m/z = 178 + 192 + 206 + 220)  

m/z Identification 

71 
1 n-C15; 2 n-C16; 3 n-C17; 4 pristane; 5 n-C18; 6 phytane; 7 n-C19; 8 n-C20; 9 n-C21; 10 n-C22; 11 n-C23; 

12 n-C24; 13 n-C25; 14 n-C26; 15 n-C27; 16 n-C28; 17 n-C29; 18 n-C30; 19 n-C31; 20 n-C32 

191 

1 C19 – tricyclic terpane; 2 C20 – tricyclic terpane; 3 C21 – tricyclic terpane; 4 C23 – tricyclic terpane; 5 

C24 – tricyclic terpane; 6 C25 – tricyclic terpane; 7 C24 – tetracyclic terpane; 8 C26 – tricyclic terpane; 9 

C27 – 18α (H)-22,29,30-trisnorhopane (Ts); 10 C27 – 17α(H)-22,29,30-trisnorhopane (Tm); 11 C29 – 

17α(H),21β(H)-hopane; 12 C30 – 17α(H),21β(H)-hopane 

217 

1 C27 – 13β(H),17α(H) diasterane (20S); 2 C27 – 13β(H),17α(H) diasterane (20R); 3 C27 – 

13α(H),17β(H) diasterane (20S); 4 C27 – 13α(H),17β(H) diasterane (20R); 5 C28 – 13β(H),17α(H) 

diasterane (20S); 6 C28 – 13β(H),17α(H) diasterane (20R); 7 C28 – 13α(H),17β(H) diasterane (20S) + 

C27 – 14α(H),17α(H) sterane (20S); 8 C29 – 13β(H),17α(H) diasterane (20S) + C27 – 14β(H),17β(H) 

sterane (20R); 9 C27 – 14β(H),17β(H) sterane (20S) + C28 – 13α(H),17β(H) diasterane (20R); 10 C27 – 

14α(H),17α(H) sterane (20R); 11 C29 – 13β(H),17α(H) diasterane (20R); 12 C29 – 13α(H),17β(H) 

diasterane (20S); 13 C28 – 14α(H),17α(H) sterane (20S); 14 C29 – 13α(H),17β(H) diasterane (20R) + 

C28 – 14β(H),17β(H) sterane (20R); 15 C28 – 14β(H),17β(H) sterane (20S); 16 C28 – 14α(H),17α(H) 

sterane (20R); 17 C29 – 14α(H),17α(H) sterane (20S); 18 C29 – 14β(H),17β(H) sterane (20R); 19 C29 – 

14β(H),17β(H) sterane (20S); 20 C29 – 14α(H),17α(H) sterane (20R) 

178  1 Phenanthrene 

192 2 Methyl-phenanthrenes 

206 3 Dimethyl-phenanthrenes 

220 4 Trimethyl-phenanthrenes 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 


