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Resolving origin of the multimode Jahn-Teller effect in 

metallophthalocyanines  

Lj. Andjelkovića, S. Stepanovića, F. Vlahovićb, M. Zlatara, M. Grudenc,* 

 

A detailed Density Functional Theory (DFT) analysis was performed in order to study the multimode 

Jahn-Teller (JT) problem in the electronic ground state of manganese phthalocyanine (MnPc). 

Comparison with magnesium phthalocyanine ion (MgPc¯) and phthalocyanine trianion (Pc3¯), also 

prone to the JT effect, is presented. Our results clarify the origin and provide the microscopic insight 

into the symmetry breaking process. The JT distortion is highly influenced by the coordination of 

phthalocyanine to the MnII ion, and occurs over the whole system, while MgPc¯ complex ion possesses 

mainly ligand-based instability. 

Introduction 

Phthalocyanines, structurally close to biologically relevant 

porphyrins, are molecules of the utmost importance in 

nanoelectronics,1 optoelectronics,2 chemical sensors,3 and so 

forth. Although the first phthalocyanine was synthesized 

more than a century ago,4 the development of new functional 

phthalocyanines is still relentlessly growing, due to their 

unique properties5 and various potential uses in the modern 

science. Coordination to a metal ion leads to a great diversity 

of possibilities in the technological application, e.g. they are 

richly utilized as dyes6 and catalysts7. Profound investigations 

indicate that atomically thin films of transition metal (TM) 

(copper, nickel, cobalt, iron, manganese) phthalocyanines, 

initially insulators, can become conductors through 

potassium doping, opening the way to a new class of 

superconductors.8,9 Manganese phthalocyanine (MnPc) 

belongs to the class of organic semiconductors and molecular 

magnets.10 MnPc acts as a spin-filter and its spin can be 

controlled in the defined manner,11-14 presenting an important 

prerequisite for the possible use in molecular spintronics and 

quantum computing.15-18 Therefore, metallophthalocyanines 

are deservedly called "the compounds of the 2lst century".19 

Many ideas, questions and concerns related to the practical 

applications of this class of compounds require a quantitative 

understanding of the chemistry and physics on the 

microscopic level. 

Since 3d TM ion complexes in different spin states 

usually display quite different structural, spectral and 

magnetic properties, and also reactivity, it is important to 

correctly determine the spin ground state of the system. For 

instance, MnII in MnPc has five d-electrons that can be 

distributed in a square-planar environment in three different 

ways: with a maximum number of unpaired electrons, leading 

to the high spin state, with maximally paired electrons – 

resulting in the low spin state, or intermediate spin. It was 

found that intermediate spin is the ground state,20 however, 

different ground electronic states within this spin multiplicity 

are still a subject of debate in the literature.21-27 In order to 

clarify these issues we performed Density Functional Theory 

(DFT) calculations with various Density Functional 

Approximations (DFAs) reliable for the spin state energetics. 

Furthermore, one of the possible, already reported, lowest-

lying states, 4Eg, is the subject to the Jahn-Teller (JT) 

distortion.28,29 To the best of our knowledge, the JT effect in 

MnPc was not analyzed so far, even the significance of the JT 

distortion and its influence on the properties of the systems is 

well recognized.29 The distortion can be the inherent feature 

of the central metal ion in TM compounds, but may also 

originate from the ligand itself. Therefore, the comparison 

between 3s-metallophthalocyanine, magnesium 

phthalocyanine ion (MgPc¯), and 3d-metallophthalocyanine, 

MnPc, can give answers on the nature of the distortion. 

Furthermore, the question is what happens with 

phthalocyanine trianion (Pc3¯) that itself is an example of 

multimode E⊗(b1+b2) JT problem, the same as 

aforementioned complexes. For this purpose we performed 

DFT approach, developed by Daul at al.,30,31 proven to be 

accurate for the analysis of the JT effect in medium-to-large 

molecules.32-36 In addition, energy decomposition analysis 
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(EDA),37 the powerful tool for generating a compact, 

qualitative and quantitative picture of a chemical bond 

formation between the ligand and central metal ion,38 was 

performed to afford microscopic insight into the macroscopic 

features. In this way we can explore different energy 

contributions and provide information about the changes that 

occur after the chemical bond is formed enabling us to 

understand how the central metal ion influences the distortion 

in these molecules, and hence how electronic structure control 

the nuclear motion in similar systems. In order to tackle the 

multimode problem and quantify the role played by different 

normal modes in symmetry breaking processes, the Intrinsic 

Distortion Path (IDP) model is employed.31-33,39,40 The 

essence of the IDP model is to analyze multimode JT effect 

within harmonic approximation and to provide important 

chemical information like an approximation to the minimum 

energy path, and quantification of the forces along each JT 

active mode, or in other words calculation of the vibronic 

coupling constants. 

Computational details 

The DFT calculations have been carried out using the Amsterdam 

Density Functional program package, ADF2013.01.41-43 Geometry 

optimizations of Pc3¯, MgPc¯ and MnPc was performed using local 

density approximation (LDA) characterized by the Vosko-Willk-

Nusair (VWN) parameterization,44 as well as with general gradient 

approximation (GGA) in the form of OPBE45 and with hybrid 

B3LYP*46 functional. Molecular orbitals were expanded in an 

uncontracted set of Slater type orbitals (STOs) of Triple-zeta 

quality with double polarization function (TZ2P) basis set.47,48 All 

electrons were treated explicitly during the geometry 

optimizations. An auxiliary set of s, p, d, f, and g STOs was used 

to fit the molecular density and to represent the Coulomb and 

exchange potentials accurately for each SCF cycle. All 

calculations were spin-unrestricted. Geometries of all possible 

spin states (doublet, quartet and sextet) of MnPc were fully 

optimized. In addition, by imposing different occupation in the 

Kohn-Sham (KS) MOs, three intermediate spin states (4Eg, 4A2g, 
4B2g) of MnPC are considered. For this purpose, energies and 

gradients were calculated also using BP86-D3,49-51 S12g,52 SSB-

D,52 M06-L,53 PBE054,55 and TPSSh56 DFAs. For all calculations 

Becke grid of normal quality was used.57,58 Harmonic frequencies 

were calculated in order to ascertain that all optimized structures 

are stationary points on the potential energy surfaces. 

In order to quantify the JT effect in the cases where the ground 

state is orbitally degenerate, geometries and energies of the high 

symmetry (HS), D4h, and low symmetry (LS), D2h, nuclear 

arrangements should be known. The multideterminant electronic 

state of the HS configuration is represented with the average of 

configuration (AOC) SCF calculation,30 where the degenerate 

orbitals are equally populated, leading to a homogenous 

distribution of electrons over the components of the degenerate 

irreducible representations (irrep). The AOC approach gives a 

proper geometry of the HS species. In order to get the energy of 

the HS molecular configuration, a single point calculation 

imposing the lower symmetry of the electron density is performed 

(second step). The last, straightforward step involves geometry 

optimization of the LS structures, yielding different LS geometries 

depending on the particular occupation of the originally 

degenerate KS MOs. The lowest energy structure is the minimum, 

while other LS structure is the saddle point. Their energy 

difference is the warping barrier, Δ. The JT stabilization energy 

(EJT) is the difference in energies obtained in the second and the 

last step for the structures with the same electron distribution. The 

JT radius (RJT), describing a direction and magnitude of the JT 

distortion, is given by the length of the distortion vector between 

the HS and the LS minimum energy configurations. 

The nature of metal-ligand bonding in MgPc¯ and MnPc 

was analyzed with the aid of the EDA method59,60 as 

implemented in ADF.42,43 The interaction energy, Eint, 

between two fragments is decomposed into electrostatic, 

Pauli repulsion, and orbital interaction terms. The first term 

is the quasi-classical electrostatic interaction between the 

fragments; the second term is the repulsive Pauli interaction 

between occupied orbitals on the two fragments; the last term 

is the stabilizing interaction between the occupied MOs from 

one fragment with the unoccupied MOs of the other fragment 

and polarization in the same fragment. In attempt to clarify 

the origin of the JT distortion EDA was performed on the HS, 

as well as, on the LS distorted structures. In order to get EJT, 

in addition to the changes in Eint when breaking the symmetry, 

it is necessary to consider changes in the preparation energies 

of the fragments, ΔEprep as well: 

 

−𝐸JT = (𝐸𝑖𝑛𝑡(LS) − 𝐸𝑖𝑛𝑡(HS)) + (𝐸𝑝𝑟𝑒𝑝(LS) − 𝐸𝑝𝑟𝑒𝑝(HS)) = ∆𝐸𝑖𝑛𝑡 + ∆𝐸𝑝𝑟𝑒𝑝                   (1)
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The IDP, 31-33,39,40 method for the analysis of the 

multimode JT problem, is based on the fact that all the 

information about the vibronic coupling at the HS nuclear 

arrangement is also contained in the distorted LS minimum 

energy structure.  The reference point for the method is the 

LS configuration, a true minimum on the potential energy 

surface, and the distortion is given as a superposition of all 

totally symmetric normal modes in the LS point group. The 

IDP is a reaction path starting from the HS geometry and 

ending in the LS minimum using the quadratic energy 

surface:  

𝐸JT = ∑
1

2𝑖 𝐾𝑖
𝐿𝑆[𝑄⃗⃗ 𝑖

𝐿𝑆(𝐻𝑆)]
2
        (2) 

where 𝑄⃗⃗ 𝑖
𝐿𝑆(𝐻𝑆) is the HS geometry expressed in terms of the 

LS vibrational modes, and 𝐾𝑖
𝐿𝑆 are the harmonic force 

constants of the LS normal modes obtained from the DFT 

calculations. With this model it is possible to directly 

distinguish the contributions of the different normal modes to 

the JT distortion, the forces along either LS or HS normal 

modes at the HS point, as well as how these forces change 

along a relevant particular path of distortion. 𝑅⃗⃗ 𝐽𝑇 is expressed 

in terms of either LS or HS normal modes: 

𝑅⃗⃗ JT = ∑ 𝑟𝐽𝑇,𝑖
𝐿𝑆

𝑖 𝑄⃗⃗ 𝑖
𝐿𝑆 = ∑ 𝑟𝐽𝑇,𝑖

𝐻𝑆
𝑖 𝑄⃗⃗ 𝑖

𝐻𝑆       (3) 

where rJT,i is the contribution of the displacements along the 

LS or HS normal coordinate to the 𝑅⃗⃗ JT, or in other words the 

JT radius of the particular normal mode. 

Results and Discussion 

In order to clarify the complicated electronic structure of 

MnPc, DFT calculations for its lowest lying electronic states 

were performed using various DFAs. MnII in the square-

planar environment has five electrons in the 3d shell, leading 

to the three possible spin states: low spin, S=1/2, intermediate 

spin, S=3/2 and high spin, S=5/2. These three spin states 

produce five lowest lying electronic states, out of which three 

belong to the intermediate spin state, Table 1 and Figure 1. 

Other possible electronic states are at least 20 kcal mol-1 

higher in energy than the high spin state, and thus, is excluded 

from further consideration. Although previous 

experimental21-24,61 and theoretical studies22,25,62-64 have 

agreed that intermediate spin state is the ground state, the 

order of the close-lying quartet electronic states is still not 

clear. According to the different experimental techniques, the 

ground state is either assigned as 4Eg,23,26,62-64 or 4Eg and 4A2g 

are equally possible21,22. Single-crystal magnetic study found 
4A2g as the electronic ground state.27 Previous experimental 

study65 revealed 4A2g ground state into which the excited 4Eg 

term is mixed by spin–orbit coupling. Our DFT calculations 

revealed that regardless of the DFAs used, intermediate spin 

(1 on the Figure 1), 4Eg, is the ground state, Table 1. 

 
Figure 1. Qualitative energetics and electronic configurations for the five 

lowest lying electronic states of MnPc calculated with B3LYP*. 

It is worth to mention that GGAs and meta-GGA gave that 
4Eg is more stable than 4A2g (depicted in the Figure 1 as 2), 

and 4B2g (3 on the Figure 1) for approximately 10 kcal mol-1. 

In the case of OPBE, a large energy difference between 

intermediate spin 4B2g and 4A2g states is obtained. The energy 

difference between 4Eg and 4A2g calculated with hybrids, 

B3LYP*, PBE0 and TPSSh, is smaller, Table 1. It is well-

known fact that some GGAs such as OPBE, S12g and SSB-

D, as well as M06-L, B3LYP* and TPSSh are superior for the 

determination of energy difference between various spin 

states,46,66-70 but since the three lowest electronic states belong 

to the same intermediate spin state, it should not be surprising 

that hybrid functionals perform better. B3LYP* and TPSSh 

gave good relative spin state energetics, while PBE0 

artificially stabilized the high spin state.  

In summary, irrespective of the choice of DFAs 4Eg is the 

ground state. This degenerate electronic ground state is prone 

to the JT distortion, same as in the case of MgPc¯ and Pc3¯. 

All three considered molecules in the electronic ground state 

have a single electron or a hole in a doubly degenerate 

HOMO, leading to 2Eg (4Eg for MnPc) ground electronic state, 

in perfect square-planar nuclear configurations that belong to 

the D4h point group. The symmetric direct product of the Eg 

electronic state transforms as A1g+B1g+B2g, giving the 

symmetries of the JT active normal modes. These three 

vibrations in square-planar structures are depicted in Figure 

2, using the vibrational energy distribution representation.71 

 
Figure 2. Schematic vibrational energy distribution representation of the 

a1g, b1g and b2g normal modes in D4h point group. The different colors 

indicate the direction of the displacement vector. 
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Table 1.  Energy differences (kcal mol-1) for the five lowest lying electronic states of MnPc calculated with different DFAs. 

Electronic state BP86-D3 OPBE S12g SSB-

D 

M06-

L 

B3LYP* PBE0 TPSSh 

Low spin 2A1g 24.25 17.4

8 

17.3

4 

32.49 16.51 16.92 22.4

1 

15.76 
Intermediate spin (1) 4Eg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Intermediate spin (2) 4A2g 8.81 11.2

8 

12.2

4 

12.41 15.35 3.97 2.63 5.45 

Intermediate spin (3) 4B2g 10.79 17.2

1 

12.1

8 

12.78 13.15 6.94 7.75 8.67 

High spin 6A1g 25.20 15.4

6 

19.9

2 

14.66 12.94 13.31 4.59 16.33 

Vibrations that belong to both B1g and B2g irreps in D4h point 

group distort square-planar structure to a structure with lower 

D2h symmetry, rhombus and rectangle, respectively. In the 

case of investigated molecules, the distortion is not obvious 

as in the simple JT active square-planar molecules because of 

a delocalized nature of the active normal modes, but it 

primarily occurs in the square labeled in Figure 3. Our 

calculations revealed that in all three cases, b1g normal modes 

in D4h point group lead to the minima, while b2g ones guide 

the molecules to the transition states on the potential energy 

surfaces. As a consequence, 2Eg (4Eg) ground electronic state 

splits into two non-degenerate electronic states, 2B3g (4B3g) 

and 2B2g (4B2g) in D2h point group, resulting in the stabilization 

of the molecules. 

 
Figure 3. Schematic representation of the LS structures in investigated 

molecules. Nitrogen and carbon atoms are labelled as N′, C′, N″ and C″.

 The JT parameters, EJT, ∆ and RJT, for Pc3¯, MgPc¯ and MnPc 

were calculated by well-established DFT procedure30-36 with LDA, 

OPBE and B3LYP*, Table 2. The choice of DFA have been made 

from previous experience in determination of the JT parameters by 

DFT,30-36 where LDA is shown to be the most accurate functional 

in comparison with other theoretical and/or experimental results. 

In this work obtained values do not depend significantly on a 

choice of DFAs, except in the case of B3LYP* where somewhat 

higher values of the JT parameters were noticed for Pc3¯and 

MgPc¯, Table 2. Insertion of MgII in the phthalocyanine core leads 

to the higher JT stabilization energies, although overall distortion 

is smaller, Table 2. According to earlier DFT study,72 the values 

of EJT for minimum and transition state of MgPc¯ were 406 and 

187 cm-1, respectively, which is in very good agreement with our 

calculations, although the computation procedures differ.  

Table 2. Results of the DFT calculations performed to analyze the JT effect 

in Pc3¯, MgPc¯ and MnPc; the JT parameters EJT and Δ are given in cm-1 

and RJT in (amu)1/2Å. 

Molecule Symmetry LDA OPBE B3LYP* 

Pc3¯ 

EJT, 2B2g 319 331 454 

EJT, 2B3g 141 146 253 

EJT (IDP), 2B2g 305 311 465 

EJT (IDP), 2B3g 142 148 214 

Δ 178  185  201 

RJT, 2B2g 

RJT, 2B3g 

0.34 0.32 0.34 

0.21 0.26 0.20 

MgPc¯ 

EJT, 2B2g 399 421 614 

EJT, 2B3g 181 194 273 

EJT (IDP), 2B2g 402 417 606 

EJT (IDP), 2B3g 191 204 277 

Δ 218  227  341 

RJT, 2B2g 0.13 0.13 0.17 

RJT, 2B3g 0.15 0.14 0.17 

MnPc 

EJT, 4B2g 137 178 152 

EJT, 4B3g 13 25 27 

EJT (IDP), 4B2g 142 181 178 

EJT (IDP), 4B3g 20 31 34 

Δ 124  153  125 

RJT, 4B2g 0.12 0.10 0.13 

RJT, 4B3g 0.21 0.17 0.17 
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Figure 4. Schematic representation of one component of the doubly 

degenerate SOMOs in Pc3¯, MgPc¯ and MnPc. 

The doubly degenerate SOMOs (D4h point group), in the 

case of Pc3¯ and MgPc¯ are localized on the phthalocyanine 

ring, Figure 4. Contrary to the situation of Pc3¯ and MgPc¯, in 

the case of MnPc, the delocalization of MOs occurs over the 

whole molecule, Figure 4. The participation of the MnII 3d 

orbitals is not negligible, and at first glance, using MO 

analysis we can conclude that the MnII takes an important role 

in the JT distortion, although the quantitative picture remains 

secluded. 

In order to clarify the origin of the JT distortion and 

determine whether the coordinated metal ion is the source of 

symmetry breaking, EDA was carried out for the HS and LS 

minimum structures of MgPc¯ and MnPc. First, the 

investigated complexes were separated into two fragments 

which could, in a chemical way, be responsible for the JT 

phenomenon. The first fragment in both, MgPc¯ and MnPc, is 

the divalent metal ion. While MgII is a closed-shell system, 

MnII is an open-shell system which could be the main reason 

and the source of the JT distortion in MnPc. The second 

fragment is Pc3¯ for MgPc¯ and Pc2¯ for MnPc. All the energy 

components for MnPc and MgPc¯ in the HS and LS 

configurations from EDA are given in the Supplementary 

information, Table S1 and Table S2.  

The bonding analysis is summarized in Table 3, 

containing the leading components of EJT from the EDA 

analysis, given as the relative energies between the HS and 

LS configurations. Relative preparation energy, ΔEprep is 

positive in the case of MnPc, stressing that closed-shell Pc2¯ 

opposes the distortion, in contrast to the case of MgPc¯. In 

both cases, relative interaction energy, ΔEint, shows the 

stabilizing effect. The stabilization of Eint is more pronounced 

in the case of MnPc. Relative Pauli repulsion, ΔEPauli, is 

opposing the distortion in the case of MnPc, while it shows 

only minor effect in MgPc¯. ΔEelstat is more stabilizing MgPc¯. 

The relative orbital interaction energy, ΔEorbint, has 

substantial stabilizing effect in the case of MnPc, because of 

the overlap between MnII 3d orbitals and suitable ligand 

orbitals, Figure 4. ΔEorbint has negligible destabilizing effect 

in the case of MgPc¯. In summary, the JT distortion in MnPc 

arises because of stabilizing orbital interactions, while Eprep 

and EPauli are opposing the distortion. In MgPc¯ the JT 

stabilization is due to the lowering of Eprep and Eelstat. The 

EDA analysis is not affected by the choice of DFA employed, 

Table 3. Small numerical variations arise mainly because of 

different geometries used in the calculations, as seen when 

EDA is performed with OPBE on LDA optimized 

geometries, Table 3.

Table 3. EDA analysis of MnPc and MgPc¯ in the HS and LS 

configurations with LDA and OPBE; relative energies between HS 

and LS structures are given in cm-1. 

 LDA OPBE OPBE/LDA* 

MnPc 

-EJT -136 -178 -169 

ΔEprep 176 103 181 

ΔEint -312 -281 -350 

ΔEPauli 155 39 144 

ΔEelstat -156 -60 -143 

ΔEorbint -311 -260 -351 

MgPc¯ 

-EJT -400 -421 -408 

ΔEprep -296 -282 -300 

ΔEint -104 -139 -108 

ΔEPauli 73 -8 78 

ΔEelstat -182 -165 -190 

ΔEorbint 5 34 5 
*OPBE single point on LDA geometries 

 

The distortion from the HS nuclear arrangement, due to 

the JT effect, towards the LS energy minimum conformation 

is a displacement on the 3N-6 potential energy surface. In the 

realistic situations, several JT active modes are responsible 

for the distortion, and it is not possible to know a priori the 

individual role of different normal modes in the observed JT 

induced properties. These molecules are, thus, typical 

examples of the multimode JT problem. In order to ensure 

further insight and determine the linear vibronic coupling 

constants in Pc3¯, MgPc¯ and MnPc, the forces at the HS point 

were calculated toward the distortion to the LS structures, 

Table 4. An analysis of the multimode JT distortion shows 

that, out of 28 totally symmetric normal modes in the LS 

minimum conformation, in the case of Pc3¯ 10 normal modes 

describe the distortion, Table 4. In the case of MgPc¯ and 

MnPc, out of 28 ag modes, 11 vibrations are sufficient to 

completely characterize the distortion, Table 4. These normal 

modes contribute the most to the JT distortion (RJT), and to 

the total force at the HS point. 

In the case of Pc3¯ the distortion starts with the normal 

mode of 1556 cm-1, localized in C′-N″ bonds, Table 4 and 

Figures 3, 5 and 6. The vibrations of 1449 cm-1 (mainly 

localized in benzene rings of Pc3¯, Figure 3 and Figure 6) and 

720 cm-1 (C′-N′-C′ bending where the opposite ones are in the 

same phase, Figure 3 and Figure 6) also play a role in the 

stabilization of the molecule, Table 4 and Figure 5. The 

contributions of these three normal modes to the total force 

decrease rapidly along the IDP path. Although the lowest 

frequency mode of 118 cm-1 does not have important 

contribution to the total force, it contributes the most to the 

overall distortion, Table 4 and Figure 5. In the second region 

of  the IDP, this soft mode, N′N′ asymmetric stretch (Figure 

3 and Figure 6), leads molecule toward the global minimum, 

playing the main role concerning the JT radius.  
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Table 4. Analysis of the multimode JT effect in Pc3¯, MgPc¯ and MnPc at 

the D4h nuclear configuration: the JT radii (rJT,i, (amu)1/2Å), contribution of 

the most relevant D4h normal modes to the distortion (ci), and the forces 

(linear vibronic coupling constants, Fi
HS, cm-1/ Å) of the most relevant D4h 

normal modes. Total force along all JT active b1g modes is 19638 cm-1/Å, 

25297 cm-1/Å and 13115 cm-1/Å for Pc3¯, MgPc¯ and MnPc, respectively. 

The total rJT and FHS are vector sum. 

Pc3¯, D4h→D2h 

Freq., cm-1 rJT,i, (amu)1/2Å ci Fi
HS, cm-1/Å 

118 0.3121 0.8637 218 
531 0.0308 0.0084 820 
720 0.0769 0.0525 4641 
765 0.0202 0.0036 1412 
1089 0.0290 0.0075 2957 
1166 0.0110 0.0011 1174 

1271 0.0469 0.0196 7783 
1449 0.0330 0.0097 7272 
1556 0.0601 0.0320 15301 
1574 0.0054 0.0003 1211 
Total 0.3355 0.9984 19581  

 MgPc¯, D4h→D2h 

 

179 0.0216 0.0269 209 
560 0.0179 0.0184 391 
758 0.0696 0.2793 4917 
796 0.0339 0.0662 2462 
1116 0.0285 0.0468 3179 
1200 0.0257 0.0382 3562 

1327 0.0200 0.0230 3353 
1410 0.0110 0.0070 2428 
1454 0.0405 0.0943 8927 
1592 0.0630 0.2286 16757 
1602 0.0532 0.1630 14415 
Total 0.1312 0.9917 25271  

MnPc, D4h→D2h 

199    0.0839 0.4653 341 
568    0.0249 0.0409 844 
760    0.0580 0.2226 3932 
805     0.0252 0.0420 1869 

1126     0.0246 0.0400 3008 
1194    0.0276 0.0502 4228 
1331    0.0022 0.0003 654 
1420    0.0209 0.0288 4464 
1458     0.0285 0.0536 6238 
1605    0.0210 0.0290 5752 

1634    0.0197 0.0257 5716 
Total    0.1229 0.9984 13105  

 

Figure 5. IDP analysis of the D4h→D2h multimode JT distortion in Pc3¯, 

MgPc¯ and MnPc, respectively. Changes of the forces along the most 

important D4h normal modes. 

 

Figure 6. Schematic representation of the most important normal modes 

in Pc3¯. The size of vibrational motion on a nucleus is represented as 

sphere with the radius depending on the magnitude of the motion. The 

different colors indicate the direction of the motion. 

Although coordination of Pc3¯ to the magnesium divalent 

ion does not influence the doubly degenerate SOMO, Figure 

4, the JT stabilization energy and the driving force are larger 

than in the case of Pc3¯, while the distortion is almost twice 

smaller, Tables 2 and 4. The reason behind this is in the 

significant participation of the harder modes in the JT 

distortion. However, the coordination to the metal ion makes 

the molecule more rigid, and thus producing smaller RJT. 
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Figure 7. Schematic representation of the most important normal modes 

in MgPc¯. The size of vibrational motion on a nucleus is represented as 

sphere with the radius depending on the magnitude of the motion. The 

different colors indicate the direction of the motion. 

The vibrations of 1602 and 1592 cm-1 correspond to the 

normal modes localized in the C′-N″ bonds and in benzene 

rings, Figures 3, 5 and 7. These two modes have the largest 

linear vibronic coupling constants, Table 4 and Figure 5, 

although the contribution of vibration of 1454 cm-1 localized 

in benzene rings, Figure 7, is non-negligible, Table 4 and 

Figure 5. It is interesting to notice that in contrast to the 

potential energy surface of Pc3¯, the IDP analysis did not find 

the softest mode of 179 cm-1 to contribute significantly to the 

JT distortion, Table 4 and Figure 5. In this case, 11 normal 

modes play a role in the overall distortion, while the most 

dominant ones are vibrations of 1602, 1592, 1454 and 758 

cm-1, Table 4 and Figure 5. The vibration of 758 cm-1 

corroborates the normal mode of 720 cm-1 in Pc3¯, Figures 6 

and 7. 

In order to make a comparison we refer to the work of 

Tóbik et al.,72 where the linear vibronic coupling constants of 

all the JT active modes are determined, using neutral D4h 

MgPc geometry, as the starting point. The contribution of the 

b1g modes to the driving force is overall in a good agreement 

with the previously reported values,72 Figure 8. The only 

difference is in the contribution of the totally symmetric 

normal modes distortion. Within the IDP model, the AOC 

geometry of MgPc¯ is used. The neutral MgPc and charged 

MgPc¯ obtained by AOC type calculations have different 

electronic structures, and different geometries, rationalizing 

the discrepancy. However, if we take the geometry of the 

neutral MgPc as the HS structure, the values are in agreement 

with Tóbik et al.,72 Figure 8, giving us the confidence in the 

obtained results, and showing the importance of the choice of 

HS geometry.

 

Figure 8. Comparison of the contributions to the FHS of different D4h 

normal modes in MgPc¯ for different D4h geometries (from AOC geometry 

optimization of MgPc¯ and from neutral MgPc) with those of Tóbik et al.72 

On the potential energy surface of MnPc, the modes of 

1634, 1605 and 1458 cm-1 afford the largest coupling 

constants, and hence stabilize the molecule, Table 4 and 

Figures 5 and 9, although the contribution of other b1g 

vibrations cannot be neglected since the SOMO is delocalized 

over the whole system (Figure 4). As a consequence, and 

contrary to the previously investigated species, the initial 

force is obtained as a superposition of more normal modes, 

with almost the same contribution, Table 4 and Figure 5. Soft 

mode of 199 cm-1 (Figure 9), corroborating the soft modes of 

118 and 179 cm-1 in Pc3¯ and MgPc¯, respectively (Figures 6 

and 7) becomes more important in the second region, 

allowing relaxation, and the potential energy surface is more 

flat. 

To summarize, IDP model successfully explained which 

normal modes have the most important role in the 

stabilization of the systems and the overall distortion. In the 

case of Pc3¯ and MgPc¯, hard modes are responsible for the 

stabilization. 

 

Figure 9. Schematic representation of the most important normal modes 

in MnPc. The size of vibrational motion on a nucleus is represented as 

sphere with the radius depending on the magnitude of the motion. The 

different colors indicate the direction of the motion. 
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The important difference between the multimode problems in 

these two molecules is that the MgPc¯ is not relaxed toward 

the global minimum structure by the softest frequency mode. 

Because SOMO in MnPc is delocalized over the entire 

molecule, it is not surprising that eleven b1g normal modes in 

the D4h nuclear configuration are almost equally important to 

accurately describe the relaxation of the system. There are 

several normal modes relevant for the stabilization, which is 

in contrast to the situation in Pc3¯ and MgPc¯. 

Conclusion 

The discovery of the JT effect has become a source of 

inspiration for many researchers, not only as an adoption of 

new cognitions, but it affects many fundamental properties of 

molecules. In the framework of vibronic coupling theory it is 

possible to find rationalizations of different molecular 

phenomena. Since the electron doping of various 

metallophthalocyanines produces conductors from initial 

insulators, and also opens the road to the coupling of 

electronic states and nuclear motions, the proper 

determination of the JT distortion is an important prerequisite 

for the analysis of various properties of complex systems. Our 

calculations revealed that among different possible 

intermediate spin states, 4Eg is the ground state in MnPc, 

irrespective of level of theory employed, giving the rise to the 

vibronic coupling.  

In order to understand the origin of the JT distortion, EDA 

analysis in Pc3¯, MgPc¯ and MnPc is presented. Considering 

MnPc, leading stabilizing contributions are based on the 

electron density of the MnII ion, in contrast to the MgPc¯. It is 

clear that the central metal ion presents the trigger for the JT 

distortion to occur over the whole system. The crucial effect 

in the case of MgPc¯ is the preparation energy, acting in a 

stabilizing way. Since the preparation energy is completely 

located on the phthalocyanine ligand, the JT distortion occurs 

in Pc3¯ core. To complete understanding of the JT phenomena 

in these similar systems, IDP model for the analysis of the 

multimode JT effect is successfully employed. The change of 

contribution of different vibrations to the JT distortion is 

obtained by expressing the distortion along the minimal 

energy path from HS to LS minimum structures. In the case 

of Pc3¯ and MgPc¯ only hard modes take the role in the 

stabilization. However, careful inspection revealed that softer 

modes become equally important along with the hard 

vibrations for the accurate description of the MnPc 

stabilization. It is important to highlight that obtained results 

indicate that the JT distortion is highly influenced by the 

coordination of phthalocyanine to the MnII ion, while MgPc¯ 

complex ion possesses mainly ligand-based instability. 

Different type of distortions and different nature of the 

symmetry breaking arise in these similar systems since 

different normal modes are responsible for the JT effect. This 

is of great importance, since neglecting nuclear displacements 

caused by an electronic structure would lead to the lack of 

explanation of many physical and chemical phenomena. This 

is certainly significant for the rational design of new 

phthalocyanine materials with desired properties. 
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