CHEMICAL COMPOSITION OF ASTER ALBANICUS DEG. (ASTERACEAE) ESSENTIAL OIL: TAXONOMICAL IMPLICATIONS

Nemanja Rajčević^{1,*}, Petar D. Marin¹, Ljubodrag Vujisić², Zoran Krivošej³, Vlatka Vajs² and Peđa Janaćković¹,

¹University of Belgrade, Faculty of Biology, Belgrade, Serbia ²University of Belgrade, Faculty of Chemistry, Belgrade, Serbia ³University of Priština, Faculty of Mathematics and Natural Sciences, Kosovska Mitrovica, Serbia

*Corresponding author: nemanja@bio.bg.ac.rs

Abstract: The composition of essential oil isolated from the areal parts of *Aster albanicus* Deg, an endemic species of the central Balkans, was analyzed. In total, 111 compounds were identified, representing 98% of the essential oil. The essential oil was dominated by sesquiterpene (69.3%) and monoterpene hydrocarbons (15.9%), with germacrene D as the most abundant compound (34.7%). Several multivariant statistical methods (HCA, NJ, PCoA) were deployed to infer the relation between *A. albanicus* and other species belonging to this genus. Taxonomical implications are discussed.

Key words: Aster albanicus; essential oil composition; chemotaxonomy; sesquiterpenes; monoterpenes

Received February 23, 2015; Revised March 4, 2015; Accepted March 5, 2015

INTRODUCTION

The genus *Aster* L. (Asteraceae) is comprised of ca.180 Eurasian species, 17 in SE Africa and 1 in N America (Mabberley, 2008). In the flora of Europe, ca. 30 species are recognized. *Aster albanicus* Deg. is an endemic species growing wild in the mountain border between Serbia and Albania (Tutin et al., 1976). Traditional treatments place most species in the genus *Aster* L. According to the latest analyses of morphology, chloroplast DNA RFLP and ITS sequence data, as well as karyotype studies, species of *Aster* are polyphyletic and members of a number of very distinct phylads within the tribe (Lane, 1982; Guy L. Nesom, 1994; Semple et al., 1996; Semple et al., 2001; Noyes and Rieseberg, 1999; Brouillet et al., 2001).

Essential oils have been previously used in the chemotaxonomy of conifers (Šarac et al., 2013; Rajčević et al., 2013) and angiosperms (Harborne and Turner, 1984; Pérez et al., 2000; Skaltsa et al., 2001; Maggio et al., 2012). Thus, further chemical investigation of *Aster* including essential oil (terpenoids) composition and distribution (Tsankova and Bohlmann, 1983; Bohlmann et al., 1985; Chung et al., 1993) show potential chemotaxonomical significance. The composition of the essential oil of *Aster albanicus* Deg. was not previously investigated. Our results in combination with the available data might prove helpful in future infrageneric classificatory schemes of this genus.

MATERIALS AND METHODS

Plant material

Aerial parts were collected from the population of *Aster albanicus* Deg. (Asteraceae) growing wild on Mt. Rogozna, north of Kosovska Mitrovica, during the autumn 2007-2008. A voucher specimen has been deposited at the Herbarium of the Institute of Botany, University of Belgrade, Faculty of Biology (BEOU). Crude essential oil was obtained by 2-h simultaneous distillation-extraction (SDE) in a Likens-Nickerson-type apparatus (Likens and Nickerson, 1964; Chaintreau, 2001) from dried areal

parts of the plant (50 g). The volatiles were collected in CH₂Cl₂.

GC/GC-MS (gas chromatography-mass spectrometry)

Analysis was performed on an Agilent 7890A GC system equipped with 5975C MSD and FID, using DB-5 MS column (30 m \times 0.25 mm \times 0.25 μ m). Injection volume was 1 µL and injector temperature was 220°C with a 10:1 split ratio. Carrier gas (He) flow rate was 1.0 ml/min at 210°C (constant pressure mode). Column temperature was linearly programmed in a range of 60-240°C at a rate of 3°C/ min. The transfer line was heated at 240°C. The FID detector temperature was 300°C. EI mass spectra (70 eV) were acquired in m/z range of 30-550. A library search and mass spectral deconvolution and extraction were performed using NIST AM-DIS (Automated Mass Spectral Deconvolution and Identification System) software version 2.64.113.71, using retention index (RI) calibration data analysis parameters with a "strong" level and 10% penalty for compounds without an RI. The retention indices were experimentally determined using the standard method involving retention times of *n*-alkanes, injected after the essential oil under the same chromatographic conditions. The search was performed against our own library, containing 4972 spectra. Percentage (relative) of the identified compounds was computed from GC peak area.

Statistical procedures

These are indicated in the results and figure captions article.

Table 1. Relative abundances of compounds in essential	oil of
Aster albanicus Deg. obtained by SDE.	

No	KI ^{a)}	Compound	[%] ^{b)}
1	773	Hexanal	0.1
2	836	Furfural	0.2
3	840	Isovaleric acid	tr
4	855	2(<i>E</i>)-Hexanal	0.7

No	KI ^{a)}	Compound	[%] ^{b)}
5	859	3(Z)-Hexenol	0.1
6	871	<i>n</i> -Hexanol	0.3
7	879	4(Z)-Heptanal	tr
8	912	2-Acetylfuran	tr
9	915	(2E,4E)-Hexadienal	tr
10	920	Tricyclene	tr
11	923	α-Thujene	tr
12	939	α-Pinene	1.3
13	945	Camphene	tr
14	961	Benzylaldehyde	tr
15	967	5-methyl-Furfural	tr
16	975	Sabinene	0.2
17	979	β-Pinene	11.9
18	986	6-methyl-5-Hepten-2-one	tr
19	991	Myrcene	0.7
20	993	(EE)-2,5-heptafurnal	0.2
21	1005	α-Phellandrene	tr
22	1012	(2E,4E)-heptadienal	0.3
23	1020	δ-Car-2-ene	tr
24	1022	o-Cymene	tr
25	1030	β-Phellandrene	0.6
26	1039	Benzyl alcohol	tr
27	1037	(<i>Z</i>)-β-Ocimene	0.5
28	1487	Benzene acetaldehyde	0.1
29	1050	(<i>E</i>)-β-Ocimene	0.4
30	1059	γ-Terpinene	tr
31	1087	cis-Linalool oxide	0.1
32	1089	Terpinolene	0.1
33	1078	1-Nonen-4-ol	0.2
34	1097	Linalool	0.6
35	1101	<i>n</i> -Nonanal	0.2
36	1116	Penthyl ethyl alcohol	tr
37	1123	trans-p-Mentha-2,8-dien-1-o	tr
38	1137	Pseudo-cyclocitral	0.2
39	1141	trans-Pinocarveol	0.3
40	1150	trans-Verbenol	tr
41	1155	trans-Nonen-2-al	tr
42	1165	Pinocarvone	0.2
43	1170	p-Mentha-1,5-dien-8-ol	tr
44	1176	Terpinen-4-ol	0.2
45	1183	<i>p</i> -Cymen-8-ol	tr
46	1189	α-Terpineol	0.7
47	1196	Myrtenal	0.4
48	1250	n-Decenal	tr

Table 2 continued:

No	KI ^{a)}	Compound	[%] ^{b)}
49	1251	ß-Cytrocitral	tr
50	1252	Nerol	tr
51	1253	Geraniol	0.1
52	1262	cis-Chrysanthenyl acetate	tr
53	1288	Indole	tr
54	1310	Unidentified	0.4
55	1318	(2 <i>E</i> ,4 <i>E</i>)-Decadienal	tr
56	1338	δ-Elemene	0.3
57	1345	α-Cubebene	0.1
58	1351	Eugenol	tr
59	1353	α-Copaene	0.1
60	1385	(<i>E</i>)-β-Damascenone	0.5
61	1388	β-Cububene	0.6
62	1391	β-Elemene	0.7
63	1394	(Z)-Jasmone	tr
64	1409	α-Gurjunene	0.1
65	1419	Caryophyllene E	10.9
66	1432	β-Copaene	0.2
67	1433	γ-Elemene	0.2
68	1439	α-Guaiene	tr
69	1455	α-Humulene	2.5
70	1460	allo-Aromadendrene	0.7
71	1485	Germacrene D	34.7
72	1485	ß-Selinene	0.3
73	1494	trans-Muurola-4(14),5-diene	0.2
74	1500	Bicyclogermacrene	3.2
75	1500	a-Muurolene	0.6
76	1509	Germacrene A	0.9
77	1512	γ-Cadinene	0.5
78	1524	δ-Cadinene	2.1
79	1532	trans-Cadina-1,4-diene	0.1
80	1534	α-Cadinene	0.1
81	1548	α-Calacorene	tr
82	1561	β-Germacrene	4.8
83	1564	(E)-Nerolidol	tr
84	1570	Aromadendrene oxide (2)	0.2
85	1578	Spathulenol	1.3
86	1583	Caryophyllene oxide	1.3
87	1590	6-isopropenyl-4,8a-dimethyl-1,2,3,5, 6,7,8,8a-octahydro-Naphtalen-2-ol	0.2
88	1593	Viridiflorol 0.1	
89	1594	Ledol	0.2

No	KI ^{a)}	Compound	[%] ^{b)}
90	1608	Humulene epoxide II	0.3
91	1615	1,10-di-epi-Cubenol	0.2
92	1618	Juneol	0.2
93	1625	Muurola-4,10(14)-dien-1-beta-ol	1.0
94	1642	epi-a-Murrolol	1.3
95	1646	α-Muurolol	0.4
96	1651	β-Eudesmol	0.3
97	1652	α-Cadinol	1.5
98	1657	10,10-dimethyl4-acetil-tricy- clo[5,2,1,0(1,5)]decane	0.2
99	1661	Aristolene epoxide	0.3
100	1677	Germacra-4(15),5,10(14)-trien-1- alpha-ol	0.3
101	1680	Eudesma-4(15),7-dien-1-beta-ol	0.2
102	1693	Junicedranol	0.2
103	1711	Myristaldehyde	0.3
104	1741	Mint sulfide	tr
105	1760	Benzyl benzoate	0.2
106	1811	ß-Costol	0.3
107	1879	14-hydroxy-δ-Cadinene	tr
108	1949	Phytol	1.0
109	1967	Phytone	
110	1970	<i>m</i> -Tolyl isothiocyanate	tr
111	1972	Hexadecanoic acid	0.5
		Monoterpenes	18.5
		Monoterpene hydrocarbons	15.9
	Monoterpenes oxygenated		2.6
		Sesquiterpenes 79	
	Sesquiterpene hydrocarbons		69.3
	Sesquiterpenes oxygenated		10.1
	Diterpenes		1.0
		Diterpenes oxygenated	
	Others ^{c)}		3.7
		Unknown	0.4
	TOTAL		98.0

^a) Kovats indices obtained experimentally using the standard method involving retention times of *n*-alkanes, injected after the essential oil under the same chromatographic conditions. ^b) Contents are given as percentages of the total essential oil composition; *tr*: trace (0.05<*tr*<0.10%); compounds with contents <0.05% are not listed; ^c) Others: aliphatic hydrocarbons, aliphatic aldehydes, aromatic ester + aliphatic acid, alkyl aromatic alcohols, aryl esters of aromatic acid.

RESULTS AND DISCUSSION

The analysis of essential oil of *A. albanicus* Deg. (Table 1) showed 111 compounds, representing 98.0% of the oil. The essential oil consisted mainly of sesquiterpene hydrocarbons (69.3%) followed by monoterpene hydrocarbons (15.9%) and oxygenated sesquiterpenes (10.1%). The predominant compound was germacrene D (34.7%). Other representative compounds were β -pinene (11.9%), (*E*)-caryophyllene (10.9%), β -germacrene (4.8%) and bicyclogermacrene (3.2%).

The essential oils of only a few species of *Aster* have been previously investigated. The essential oils of *Aster poliothamnus, A. ageratoides* and *A. subulatus* are dominated by monoterpenes (M. Miyazawa and Kameoka, 1977; Tu et al., 2006; Mitsuo Miyazawa et al., 2008). The essential oil of *A. lanceolatus, A. handelii, A. tataricus* and *A. koraiensis* were dominated by sesquiterpenes (Table 2) (Xiao-ping and Xiaoping, 2006; Dias et al., 2009; Choi, 2012). Several other species, now belonging to other genera, were also previously studied. The species *A. hesperius* Gray (*Symphyotrichum lanceolatum* ssp. *hesperium* (Gray) Nesom – accepted name) had essential oil dominated by non-terpene components (alkanes, alcohols, aldehydes,

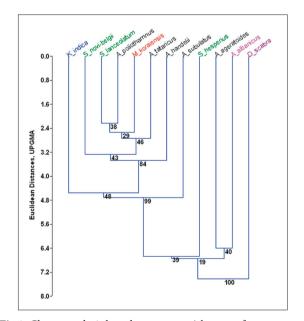


Fig 1. Cluster analysis based on presence/absence of components in essential oil of *Aster s.l.* species (Euclidean distances, UPGMA).

etc) and monoterpenes (Tabanca et al., 2007), and *A. subulatus* Michx. (*Symphyotrichum subulatum* (Michx.) G.L. Nesom – accepted name) had essential oil dominated by monoterpenes (M. Miyazawa and Kameoka, 1977). *A. scaber* Thunb. (*Doellingeria scabra* (Thunb.) Nees. – accepted name), now excluded from the genus *Aster* and belonging to *Doellingeria* established by Nees (1832), had essential oil dominated by monoterpenes (Chung et al., 1993; Lee et al., 2012). *A. indicus* (*Kalimeris indica* (L.) Sch.Bip. – accepted name) had essential oil dominated by sesquiterpenes.

The genus *Symphyotrichum* belongs to the subtribe Symphyotrichinae G. L. Nesom (1994) and *Doellingeria* is an unplaced genus. On the other hand, the genus *Aster* belongs to the subtribe Asterinae (Cass.) Dumort (1827) of the tribe Astereae Cass. (1819) (G. L. Nesom and Robinson, 2007). In relation to other investigated species, the essential oils of species belonging to *Aster s.l.* varied, from those dominated by monoterpenes to those dominated by sesquiterpenes. There was no evident genus-related pattern in this domination. Furthermore, the composition of the essential oil of *A. albanicus* has the most similarities with *A. ageratoides*, even though sesquiterpenes dominated the former and monoterpenes the latter.

To infer similarities between samples, several statistical methods were deployed using the presence/absence of compounds in the essential oil (without taking into account the average abundances of the components). Cluster analyses using dif-

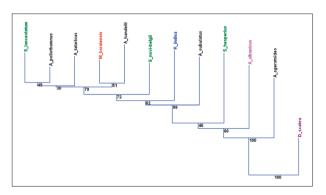
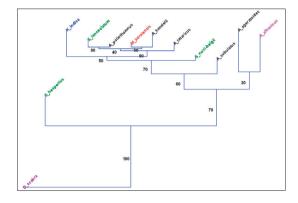
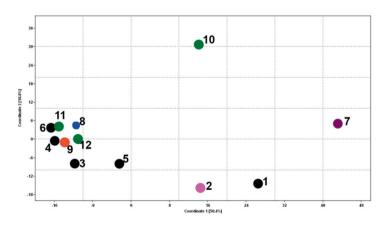



Fig 2. Neighbor joining tree based on presence/absence of components in essential oil of *Aster s.l.* species.


ferent distance measures (Euclidean, Jukes-Cantor, Gower) and UPGMA resulted in the same trees, with high bootstrap support (Fig. 1). The neighborhood joining tree with D. scabra used as an outgroup gave similar results, grouping A. albanicus and A. ageratoides close together and the rest of the species in a related subclade (Fig. 2). Parsimony analysis using the branch-and-bound algorithm and Wagner optimization resulted in several trees, from which the optimal one was chosen (i.e. the one with the highest bootstrap support) (Fig. 3). All cluster analyses gave similar results. D. scabra was always in a separate clade from the other species. Furthermore, A. albanicus and A. ageratoides were always grouped close together, next to all other Aster species, including species from other genera (e.g. Symphyotrichum, Kalimeris etc.). Species from genus Symphyotrichum never formed a separate group.

Principal coordinates analysis (PCoA) was also performed and it showed similar results. Four groups can be separated: (i) *D. scabra* and (ii) *S. hesperium* that formed separate groups, (iii) *A. albanicus* and *A. ageratoides* formed a third group, and (iv) all other species clustered close together into the fourth (Fig. 4).

Fig 3. Parsimony analysis based on presence/absence of components in essential oil of *Aster s.l.* species.

According to all available data and the present results, we concluded that the relationship of *Aster s.str.* and other genera belonging to Astereae is unclear, and the systematics within the subtribe Asterinae in the sense of Nesom (2007) is still uncertain. Even though *D. scabra* was always separated, *Aster s.str.* and the species belonging to other genera, i.e. *Kalimeris, Miyamayomena, Symphyotrichum,* always grouped together, forming mixed subclades. However, more extensive study of the essential oil of *Aster* species, which should take into account both compounds and their relative abundances in essential oils, is necessary to enhance resolution and improve systematics within the subtribe Asterinae.

Fig 4. Principle Coordinate Analysis based on presence/absence of components in essential oil of *Aster s.l. species.* 1 – *Aster ageratoides,* 2 – *A. albanicus,* 3 – *A. handelii,* 4 – *A. poliothamnus,* 5 – *A. subulatus,* 6 – *A. tataricus,* 7 – *Doellingeria scabra,* 8 – *Kalimeris indica,* 9 – *Miyamayomena koraiensis,* 10 – *Symphyotrichum hesperium,* 11 – *S. lanceolatum,* 12 – *S. novi-beligii.*

No.	Taxon	Dominant group	Reference
1	Aster ageratoides Turcz.	monoterpenes	(Mitsuo Miyazawa et al., 2008)
2	Aster albanicus Deg.	sesquiterpenes	Present work
3	Aster handelii Onno	sesquiterpenes	(Xiao-ping and Xiaoping, 2006)
4	Aster poliothamnus Diels.	monoterpenes	(Tu et al., 2006)
5	Aster subulatus (Michx.) Hort. ex Michx.	monoterpenes	(M. Miyazawa and Kameoka, 1977)
6	Aster tataricus L.f.	sesquiterpenes	(Choi, 2012)
7	Doellingeria scabra (Thunb.) Nees. (=syn. Aster scaber Thunb.)	monoterpenes	(Chung et al., 1993; Lee et al., 2012)
8	Kalimeris indica (L.) Sch.Bip. (=syn. Aster indicus L.)	sesquiterpenes	(Tsubaki et al., 1966)
9	<i>Miyamayomena koraiensis</i> (Nakai) Kitam. (<i>=syn. Aster koraiensis</i> Nakai)	sesquiterpenes	(Choi, 2012)
10	Symphyotrichum hesperium (=syn. Aster hesperius)	other ^{a)}	(Tabanca et al., 2007)
11	<i>Symphyotrichum lanceolatum</i> (Willd) G.L. Nesom (<i>=syn. Aster lanceolatus</i> Wild.)	sesquiterpenes	(Semple et al., 1996)
12	Symphyotrichum novi-beligii (=syn. Aster novi-belgii)	monoterpenes	(Ibrahim et al., 2006)

^a) Other: aliphatic hydrocarbons, aliphatic aldehydes and alcohols, aliphatic acids and their esters and aldehydes, aromatic ester + aliphatic acid, alkyl aromatic alcohols, aryl esters of aromatic acid.

Acknowledgments: This research was supported by a grant from the Ministry of Education, Science and Technological development of Serbia (Project No. 173029)

Authors' contributions: NR is the main author, contributed with original data, designed all of the research, organized and analyzed data and wrote the manuscript. VV and LJV contributed to research and data analyses. ZK carried out the field research. PD was the main supervisor of the research project and reviewed several drafts of the manuscript. PJ contributed with original data and with design of all the research, was the main supervisor of the research project and reviewed several drafts of the manuscript. All authors read and approved the final manuscript.

REFERENCES

- Bohlmann, F., J. Jakupovic, M. Hashemi-Nejad and S. Huneck. (1985). Clerodane diterpenoids from Aster alpinus. Phytochemistry. 24 (3), 608-610.
- Brouillet, L., G. A. Allen, J. C. Semple and M. Ito. (2001). Its phylogeny of North American Asters (Asteraceae: Astereae). In Proceedings botany 2001. Albuquerque, New Mexico.

- Chaintreau, A. (2001). Simultaneous distillation-extraction: from birth to maturity—review. Flavour Fragr. J. 16 (2), 136-148.
- Choi, H.-S. (2012). Comparison of the essential oil composition between Aster tataricus and A. koraiensis. Anal. Chem. Lett. 2 (3), 138-151
- Chung, T. Y., J. P. Eiserich and T. Shibamoto. (1993). Volatile compounds isolated from edible korean chamchwi (Aster scaber thunb). J. Agric. Food Chem. 41 (10), 1693-1697.
- *Dias, J. de F. G., O. G. Miguel* and *M. D. Miguel*. (2009). Composition of essential oil and allelopathic activity of aromatic water of *Aster lanceolatus* Willd:(Asteraceae). *Braz. J. Pharm. Sci.* **45** (3), 469-474.
- Harborne, J. B. and B. L. Turner. (1984). Plant chemosystematics. London: Academic Press.
- Ibrahim, N. A., S. M. Mohamed, M. A. Faraid and E. M. Hassan. (2006). Chemical composition, antiviral and antimicrobial activities of the essential oils of Aster novi-belgii, Solidago canadensis and Myoporum laetum growing in Egypt. Bull. Fac. Pharm. Cairo University. 44 (1), 103-110.
- Lane, M. A. (1982). Generic limits of Xanthocephalum, Gutierrezia, Amphiachyris, Gymnosperma, Greenella and Thurovia (Compositae: Astereae). Syst. Bot. 7 (4), 405-416.
- Lee, K.-C., J.-Y. Sa, M.-H. Wang and S.-S. Han. (2012). Comparison of volatile aroma compounds between Synurus deltoides and Aster scaber leaves. Korean J. Med. Crop Sci. 20 (1), 54-62.

- *Likens*, S. T. and G. B. *Nickerson*. (1964). Detection of certain hop oil constituents in brewing products. In *Proc. am. soc. brew. chem.* Vol. 5.
- Mabberley, D. J. (2008). Mabberly's Plant-book. A Portable Dictionary of Plants, their Classifications and Uses. Cambridge University Press, Cambridge.
- Maggio, A., S. Rosselli, M. Bruno, V. Spadaro, F. M. Raimondo and F. Senatore. (2012). Chemical composition of essential oil from Italian populations of Artemisia alba Turra (Asteraceae). Molecules. 17 (9), 10232-10241.
- Miyazawa, M. and H. Kameoka. (1977). The constituents of the essential oil from Aster subulatus Michx. J. Agric. Chem. Soc. Jpn. 51.
- Miyazawa, M., J. Kawata, K. Kohno, M. Imai and T. Ono. (2008). Essential oil and headspace constituents from the aerial parts of *Aster ageratoides* Turcz. var. *ovatus* Nakai. J. Essent. Oil Res. **20** (1), 9-11.
- Nesom, G. L. (1994). Subtribal classification of the Astereae (Asteraceae). *Phytologia*. **76** (3), 193-274.
- Nesom, G. L. and H. Robinson. (2007). Tribe Astereae cass. Fam. Genera Vasc. Plants. 8, 284-342.
- Noyes, R. D. and L. H. Rieseberg. (1999). Its sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in *Aster* sl. *Am. J. Bot.* **86** (3), 398-412.
- Pérez, I., M. A. Blázquez and H. Boira. (2000). Chemotaxonomic value of the essential oil compounds in species of *Teucrium* pumilum aggregate. Phytochemistry. 55 (5), 397-401.
- Rajčević, N., P. Janaćković, S. Bojović, V. Tešević and P. D. Marin. (2013). Variability of the needle essential oils of Juniperus deltoides RP Adams from different populations in Serbia and Croatia. Chem. Biodivers. 10 (1), 144-156.
- Šarac, Z., S. Bojović, B. Nikolić, V. Tešević, I. Dorđević and P. D. Marin. (2013). Chemotaxonomic significance of the terpene composition in natural populations of *Pinus nigra* JF Arnold from Serbia. *Chem. Biodivers.* **10** (8), 1507-1520.
- Semple, J. C., S. B. Heard and C. Xiang. (1996). The Asters of Ontario (Compositae: Astereae) diplactis raf. In Oclemena

Greene, *Doellingeria* Nees and Aster L. (including canadanthus Nesom, Symphyotrichum Nees and Virgulus Raf.) Waterloo, Ontario: University Of Waterloo VIII, 94p.-illus.. in icons, maps, chromosome numbers, anatomy and morphology, keys. Vol. 1.

- Semple, J. C., C. Xiang, J. Zhang, M. Horsburgh and R. Cook. (2001). Chromosome number determinations in fam. Compositae, tribe Astereae: 6. western North American taxa and comments on generic treatments of North American Asters. *Rhodora.* **103** (914), 202-218.
- Skaltsa, H. D., A. Mavrommati and T. Constantinidis. (2001). A chemotaxonomic investigation of volatile constituents in Stachys subsect. Swainsonianeae (Labiatae). Phytochemistry. 57 (2), 235-244.
- Tabanca, N., B. Demirci, S. L. Crockett, K. H. C. Başer and D. E. Wedge. (2007). Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius and Chrysothamnus nauseosus essential oils. J. Agric. Food Chem. 55 (21), 8430-8435.
- *Tsankova, E.* and *F. Bohlmann.* (1983). A monoterpene from *Aster* bakeranus. Phytochemistry. **22** (5), 1285-1286.
- *Tsubaki, N., K. Nishimura* and *Y. Hirose.* (1966). The volatile constituents of some plants of the Compositae family. *Bull. Chem. Soc. Jpn.* **39** (2), 312-315.
- Tu, Y., X. Zong and X. Dong. (2006). Chemical component analysis of essential oil from Aster poliothamnus Diels. by GC-MS. West China J. Pharm. Sci. 21 (5), 445.
- Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb. (1976). Aster. In Flora europaea. vol. 1-5, Cambridge, London, New York & Melbourne, 4:112. Cambridge University Press.
- Xiao-ping, T. Y. Z. and Y. R. D. Xiaoping. (2006). Chemical components of essential oils from the herb of Aster handelii Onno. J. Chengdu Univ. Tradit. Chin. Med. 1, 021.