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Abstract 

In-situ synthesis of HAp/TiO2 coating on titanium was performed via anaphoretic deposition 

of HAp and simultaneous anodization of Ti to produce highly adherent and strengthened 

composite coating. The prepared coatings were characterized by scanning electron 

microscopy, Fourier transform infrared spectroscopy, X-ray difraction and electron dispersive 

spectroscopy. HAp on anodized titanium was prepared at constant voltage of 60 V and 

deposition time of 45 s, which provided uniform and adherent HAp/TiO2  composite coating 

on Ti. Since smaller size of HAp crystals within highly porous coating structures is of 

improved binding ability to various biomolecules, our coating is expected to be of excellent 

coverage and compactness. The obtained coating can be good candidate for bone implants due 

to reduced brittleness and improved adhesion. 
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1. Introduction 

Titanium is one of the few biocompatible metals that is being successfully and widely 

used for biomedical applications, mostly as dental and medical implants due to its appropriate 

hardness, adhesion, corrosion resistance, strength, toughness, density and low Young’s 

modulus [1-6]. However, it has been shown that titanium is not an fully applicable 

replacement for bone tissue due to differences in its physical and chemical characteristics 

relative to the bone, which causes poor osteoconductivity and osteoinductivity [7, 8]. In 

addition, titanium can cause an unwanted body reaction upon implantation [9]. Successful 

implantation requires the implant surface to be encapsulated by a fibrous tissue, without 

osseous junctions with the surrounding tissues. 

In order to prevent these implantation drawbacks, various surface modification 

techniques have been developed in the past in order to improve the bioactivity and 

biocompatibility of Ti implants [10]. Nowadays, the enhancement of osteointegration and 

improvement of bone tissue regeneration over a titanium implant is subjected to modification 

of titanium surface by biologically active materials. The most commonly used biocompatible 

material is hydroxyapatite (HAp, Ca10(PO4)6(OH)2) [11]. Hydroxyapatite, with stoichiometric 

Ca/P ratio of 1.667, is a main mineral constituent of hard tissue, making up to 93% of human 

bone [12, 13]. It is widely used in medical applications such as tissue engineering, drug 

delivery and bone tissue repair. HAp is of porous structure and sufficient bioactivity for its 

partial resorption leading to successful replacement of natural bone cells [14]. It has the 

ability to create strong chemical bonds with bones.  

The literature reports numerous methods for the synthesis of HAp. There is a 

microwave method, whose application leads to the creation of an appropriate HAp coating 

with the composition and structure similar to bones [15-19], whereby microwave radiation 

significantly accelerates the chemical reaction by decreasing the activation energy [20, 21]. 

For the microwave hydrothermal method, it was found that it is a suitable solution for the 
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preparation of mesoporous HAp nanoparticles without the use of a template [22, 23]. Another 

way of obtaining hydroxyapatite is a direct or indirect chemical deposition, which forms HAp 

of controlled morphology and particle size [24].  

The electrophoretic deposition (EPD) is a versatile and cost-effective technique for 

fabricating advanced HAP coatings [25]. In particular, EPD offers easy control of the 

thickness and morphology of a deposited coating through simple adjustment of the deposition 

time and applied voltage [26, 27]. Cathaphoretic deposition of the HAp coatings on titanium 

is well known and explained in the literature [28, 29]. However, there is an open question 

regarding adhesion of the coatings on substrate, where slight impact on the substrate would 

lead to its delamination. In order to overcome this problem, cathaphoretic deposits are usually 

sintered [28]. Sintering of cathaphoretic coatings enhances the metal-ceramic bond strength, 

but hydroxyapatite structure is sensitive to high temperature as it decomposes to other calcium 

phosphate species. However, duration of sintering process and choice of correct temperature 

are important factors since bone integration efficiency decreases with an increase in sintering 

temperature [30]. Certain improvement is achieved through a two-stage process - plasma 

electrolytic oxidation coupled with electrophoretic deposition - PEO-EPD, which generates 

porous coatings of hydroxyapatite with incorporated TiO2 particles on Ti [31]. This PEO-EPD 

process efficiently incorporated HAp particles into the TiO2 coating.  

Due to rather large differences in properties of the bioactive calcium phosphate 

material and the metal substrate, namely different mechanical properties, the coating adhesion 

to the substrate remains a major problem. In the literature review, it was noticed that most of 

the papers deal with the modification of the coating and surfaces of the substrate without 

adhesion testing [7, 11, 31-33]. The problem of poor coating adhesion appears in the form of 

delamination, poor mechanical properties and poor connections between ceramics and metals. 

A potential solution to this problem has been seen in the surface modification methods of the 

substrate, such as anodization, sandblasting, electrophoretic deposition of  HAp coatings or 
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chemical treatment of surface to improve adhesion [4].  Experimental work dealing with 

coating adhesion and substrate modifications did not suggest processes that would 

simultaneously modify the layer and substrate, regardless of the relatively positive results of 

adhesion [34-36]. 

The spontaneous passive titanium oxide layer on Ti is usually amorphous and very 

thin, 2–7 nm and its being stable in the physiological environment [37]. Titanium oxides 

increase calcium ion interactions, which are important for osteoblast adhesion, but it takes 

long time to osteointegrate after implantation. Although, this native TiO2 reduce the corrosion 

of Ti and have ability to promote biocompatibility, this one can be damaged easily by 

mechanical stress [37]. Therefore, there is a need to applied proper surface modification of 

titanium surface because it leads to an increase in its roughness, thereby improving the 

adhesion of the bioactive ceramic coating to the implanted titanium surface [38]. Most 

titanium implants are treated with bioactive ceramic material in order to improve 

biocompatibility, osteointegration and coating adhesion on the substrate [38-40].  

Among all modification methods, anodization of the substrate surface was proven to 

be a promising method for modifying the metal substrates [41]. This oxidation has attracted 

more attention due to its simplicity, low cost and excellent control even over the nanotube 

morphology of TiO2 by changing anodization conditions. One of the most commonly used 

methods is the surface anodization in the acidic environment and electrodeposition of the 

bioactive HAp coating. Furthermore, the alkaline pretreatment of nanotubular titanium oxide 

layer (ATi) on implant surface has been shown to accelerate the formation of HAp, which has 

characteristics and structure mimicking the features of bone tissue [42]. However, the 

literature data related to concurrent process of modifying the surface of the metal titanium 

substrate with the simultaneous application of the HAp coating can be hardly found, where 

such coating would have good adhesion to the substrate, or the coating itself would be 

incorporated into the substrate structure. Therefore, the aim of this work is to make an attempt 
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of in situ synthesis of HAp/TiO2 composite coating on titanium substrates via anaphoretic 

EPD of HAP and simultaneous anodization of Ti to strengthen the biocompatible composite 

coating without need for sintering of coating. 

 

2. Experimental 

A chemical precipitation method was used to prepare hydroxyapatite powder by the 

reaction of calcium oxide (obtained by calcination of CaCO3 for 5 h at 1000 °C in air) and 

phosphoric acid. A stoichiometric amount of the calcium oxide was stirred in distilled water 

for 10 min and phosphoric acid was added drop wise to the suspension in order to obtain 

hydroxyapatite powder, Ca10(PO4)6(OH)2. When all the necessary quantity of phosphoric acid 

was introduced, the pH reached a value of 7.4−7.6. The obtained suspension was heated to 94 

± 1 °C for 30 min and stirred for another half an hour. Upon sedimentation, the upper clear 

solution layer was decanted. The suspension was then spray-dried at 120 ± 5 °C into 

granulated powder [28]. Two types of HAp coatings were prepared, in order to compare the 

morphology and consistency of the HAp and composite HAp/TiO2 on Ti, namely 

cathaphoretic and anaphoretic coatings, respectively.  

For cathaphoretic deposition, an absolute ethanol HAp suspension (total volume = 100 

mL) was prepared to contain 10 mg/mL of HAp powder. Subsequently, suspension was 

ultrasonicated in SONICOR S-101 ultrasonic bath with 130W ultrasonic power and 40 kHz 

piezoelectric ultrasonic transducer for 15 min to reach homogeneous and stable state. To 

increase the stability of the suspension, HCl was added to adjust the pH value to 2.00. For 

anaphoretic deposition the HAp suspension was prepared by dissolving 1.0028 g of nanosized 

HAp powder in 100 mL of absolute ethanol with added 10 wt.% NaOH and pH value of 10. 

The same suspension ultrasonification procedure as for cathaphoretic deposition was 

performed on suspension for anaphoretic deposition. The titanium plates (dimensions: 10 mm 

× 10 mm × 0.89 mm, for surface analysis, Aldrich, 99.7 % purity) were used as substrates for 
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both cathaphoretic and anaphoretic deposition of HAp coatings. Before deposition, Ti plates 

were mechanically pretreated. Metal plates were polished with grit emery paper, followed by 

wet polishing with 0.3 μm alumina. Afterwards, plates were degreased in acetone and then in 

ethanol for 15 min in an ultrasonic bath. 

A two-electrode cell arrangement was used for both electrodepositions. The working 

electrode was a titanium plate, and the counter electrodes were platinum panels, placed 

parallel to the working electrode at a distance of 1.5 cm. For anaphoretic deposition, the 

electrochemical cell was filled with HAp/NaOH suspension and purged with N2 for 30 min. A 

Hewlett Packard HP6024A potentiostat/galvanostat was used as power supply. Prior to both 

electrophoretic depositions, the HAp suspensions were ultrasonically treated for 30 min to 

obtain a homogeneous particle distribution and stirred for 2 h by magnetic stirrer. Afterwards, 

both suspensions were constantly stirred during cathaphoretic and anaphoretic 

electrodepositions. The HAp coatings (labeled as catHAp) were obtained at constant voltage 

of 60 V for a deposition time of 45 s, at room temperature. The same deposition parameters 

were used for in-situ depositing of HAp/TiO2 (anHAp/TiO2) composite coatings on Ti. 

catHAp and anHAp/TiO2 coatings were air dried at room temperature. In order to compare 

catHAp and anHAp/TiO2 coatings samples with the controlled sample - anodized Ti (TiO2), 

the titanium plate (dimensions: 10 mm × 10 mm × 0.89 mm, Aldrich, 99.7 % purity) was 

subjected to the anodization procedure. The procedure had following conditions: voltage of 60 

V and time of anodization was 45 s. The anodization process was carried out in basic solution, 

and the solution was the same as for anHAp/TiO2, but free of HAp. 

Surface morphology of obtained catHAp, anHAp/TiO2 coatings and anodized titanium 

were analyzed by scanning electron microscopy (SEM) and field emission scanning electron 

microscopy (FE-SEM). Elemental surface analysis was investigated by energy-dispersive X-

ray spectroscopy (EDS). Structural and phase composition was analyzed by X-ray diffraction 

(XRD) and Fourier transform infrared spectroscopy (FTIR). 
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A scanning electron microscope (ZEISS DSM 982 Gemini) and field emission 

scanning electron microscope (Tescan Mira 3 XMU FEG-SEM) were used to analyze 

surfaces of catHAp and anHAp/TiO2 coatings, as well as anodized titanium for comparison.  

EDS analysis was performed on a Jeol JSM 5800 SEM with SiLi X-ray detector (Oxford Link 

Isis series 300, UK), connected to the SEM and a multi-channel analyzer. For structural 

analysis Michelson MB Series Bomen FTIR spectroscope (Hartmann Braun) was used in 

scanning range from 400 to 4000 cm-1. X-ray diffraction intensity measurements were 

performed on Philips PW 1051 Powder Diffractometer (Royal Philips, Amsterdam, The 

Netherlands). Ni filtered Cu Kα radiation of λ = 1.5418 Å was used in order to determine 

phase composition of anaphoretic coating and anodized titanium for comaprison. XRD 

intensity was measured using scan-step technique (2θ = 10–80°). Scanning step width was 

0.05° and exposure time was 50 s per step. The phase analysis was performed using 

commercially available computer program EVA V.9.0, and PDF-2 database was 

implemented.  

For simple and ad hoc adhesion testing samples were subjected to an ultrasonic 

treatment and scratching. Adhesion was evaluated on the basis of how firm and consistent was 

the hydroxyapatite coating, i.e. whether there was any delamination of the coating. Both 

catHAp and anHAp/TiO2 were subjected for 2 min in SONICOR S-101 ultrasonic bath with 

130W ultrasonic power and 40 kHz piezoelectric ultrasonic transducer. Arbitrary scratching 

of the catHAp and anHAp/TiO2 coatings, as well as of anodized Ti, was performed with free-

hand load to martensitic 440 stainless steel surgical blade.  The adhesion issues are 

qualitatively commented according to SEM appearance of the scratch and near-scratch region. 

3. Results and discussion 

 SEM microphotographs of catHAp and anHAp/TiO2 coatings deposited under EPD 

conditions mentioned in Experimental part are shown in Figure 1. It can be seen from Figure 

1a that catHAp coating suffers from a large number of cracks. Detailed catHAp structure, 
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with granular HAp coatings is shown on Figure 1b (greater magnification). These cracks, that 

can be seen on Figure 1a, are formed mainly due to different mechanical properties of 

substrate and coating, namely Young’s modulus. In this case, metal titanium substrate is more 

elastic than hydroxyapatite film, and taking in consideration that typical behavior of the vast 

majority of ceramic suspensions during drying is losing water content, the formation of cracks 

in pure hydroxyapatite coating is inevitable.  This process of water release takes place near 

interface between ceramic and substrate as well as in the bulk of the material. Thus the 

surface of ceramic coating shrinks which gives rise to cracks on its surface, even at low 

temperature. It was found that catHAp coatings are of very poor adhesion, if they are 

deposited on untreated Ti surface. Figure 1c shows SEM image of anHAp/TiO2 composite 

coating on titanium, while Figure 1d shows detailed morphology of anHAp/TiO2 composite 

coating with  needle-like and granular HAp shapes (greater magnification). It can be seen that 

deposition of anHAp/TiO2 took place and, unlike catHAp, there are no visible cracks. This 

could be due to in-situ depositing of anHAp/TiO2 coating and further investigation are done 

towards proving this statement.  

  

Figure 1.  

 

Adhesion of the catHAp and anHAp/TiO2 coatings was qualitatively tested indirectly 

by an ultrasonic (US) treatment as described in experimental part. Namely, the coatings 

consistency after US treatment for 2 min was visually observed, i.e. whether coating stayed on 

the substrate or not. The ultrasonification process lead to almost complete delamination of 

catHAp coating, while ultrasonification of anHAp/TiO2 coating did not lead to the 

delamination of deposit. Delaminated catHAp coating can be seen on Figure 2. 

  

Figure 2. 
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The SEM microphotographs of starting HAp powder have shown that HAp is 

agglomerated with average agglomerate size in the range 0.5-2 µm and agglomerates consist 

of large number of fine nanosized rod-shaped HAp particles of 50-100 nm size [43]. The Ca/P 

ratio of the HAP powder, determined by ICP analysis, was 1.67 [43]. After comparing starting 

HAp powder with delaminated one (Figure 2), it can be seen that morphology of HAp powder 

after deposition is different. Delaminated catHAp is of granular shape with average particle 

size in the range 1.5-25 µm without visible morphology of starting powder.  

Figure 3 shows FE-SEM microphotographs of composite anHAp/TiO2 coating on 

titanium. It can be seen from Figure 3a that there are no cracks present on the surface. The 

reason for this occurrence is most likely TiO2 layer formation simultaneous with HAp 

deposition. The former statement was proven by XRD, which will be discussed later. Form 

Figure 3b it can be seen that anHAp/TiO2 coating consist of different particle shapes i.e. 

needle-like (red arrow) and granular (blue arrow). Granular particles are obtained by 

agglomerating growing needle-like particles, which are essentially starting HAp powder. 

  

Figure 3.  

 

Anodized TiO2 layer presence improves surface roughness of metal substrate which is 

important for HAp particle bonding onto the surface. anHAp/TiO2 coating is of uniform but 

non-smooth surface appearance. FE-SEM images of anodized Ti as well as titanium surface 

after removing anHAP/TiO2 coating are shown in Figure 4.  

 

Figure 4.  
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 It can be seen from Figure 4 that morphologies of pure anodized Ti and Ti substrate of 

anHAP/TiO2 coating are different. This difference occurs mainly due to competing processes 

of anodization and electrophoretic deposition of HAp. During the anodization of Ti the 

evolution of O2 takes place, forming tubular-like shapes on the surface. This evolution of O2 is 

locally changing pH value at the vicinity of the substrate, and two phases are formed. This local 

change of pH value damages negatively charged micelle of HAp powder and deposition of HAp 

onto the surface occurs. Since this process happen almost instantaneously and simultaneously 

the adhesion is improved. On the other hand, anodization of pure Ti does not have competing 

process and the surface has different morphology. 

 EDS measurements were performed on both cathaphoretic and anaphoretic coatings, 

and the results are shown in Table 1. EDS measurements of the coatings show elements that 

confirm presence of hydroxyapatite, namely Ca/P ratio. 

 

Table 1.  

 

EDS measurements show that Ca/P ratio of both catHAp and anHAp/TiO2 coatings 

was higher than stoichiometric ratio of HAp (1.67). Even though the ideal Ca/P ratio for 

stoichiometric HAP is known to be 1.67, stable HAp phases have been found to exist over a 

range of Ca/P ratios between 1.3 and 1.8 [29]. EDS measurements are not strictly precise for 

determining the accurate amount of calcium and phosphate but it proves the presence of CaP 

phase. In order to confirm HAp and TiO2 presence in composite anHAp/TiO2 coating we 

performed XRD measurements. In Figure 5 XRD pattern of anHAp/TiO2 coating is shown 

and specific phase analysis is discussed further.  

 

Figure 5.  
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The diffractogram revealed characteristic peaks of hydroxyapatite related to crystal 

planes (002), (211), (112) and (300) at 2 = 25.85, 31.60, 32.25 and 33, respectively 

(JCPDS standard XRD card No. 86–1199) although they are partially masked and of apparent 

low intensity due to dominating reflections from the Ti substrate. The most intensive peaks of 

the pattern were Ti peaks of the substrate (JCPDS standard XRD card No. 89-5009). Specific 

most intense XRD reflections of rutile TiO2 at 2 = 27.85, 36.35 and 54.80 (JCPDS 

standard XRD card No. 88-1173) are also seen, although they are also masked by Ti 

reflections. The presence of calcium phosphate phase was also indicated by the peaks at 2 

=22.85 and 24.10 (JCPDS standard XRD card No. 70–0090). We assume that this phase is 

formed during deposition when the pH value is locally changed near the Ti surface and 

negatively charged micelle is partially collapsed. There is unidentified peak at 2 = 46.95 

which is also present at XRD diffractogram of pure Ti substrate.  

In order to investigate the quality of HAp coatings, i.e., adhesion and consistency of 

HAp-coated Ti, precise scratches, as explained in experimental part, were made on the surface 

of investigated samples. Figure 6 shows SEM images with EDS measuring places of the 

scratched anodized titanium surface and of both catHAp and anHAp/TiO2 coatings. 

 

Figure 6.  

 

 It can be seen that scratching partially delaminates both coatings from the substrate, 

revealing the substrate itself in the vicinity of the scratch. Comparing the morphology of 

anodized Ti, catHAp and anHAp/TiO2 coatings, the following things can be identified. All 

scratches are the same and scratching process revealed the substrate. Scratching leads to 

partial delamination of both cataphoretic and anaphoretic coatings, with delamination visually 

lager in catHAp rather than anHAp/TiO2 coating (Figure 6b and c). The substrate below 

delaminated catHAp coating has similar structure as pure Ti plate (Figure 6b). The substrate 
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below delaminated anHAp/TiO2 coating has similar structure as anodized Ti with tubular-like 

morphology (Figure 6c). These claims are confirmed by EDS measurements and the results 

are given in Table 2. 

 

Table 2.  

 

EDS measurements of anodized Ti (Spectrum 1, Figure 6a) shows the presence of 

anodized substrate (TiO2). In Figure 6b, Spectrum 2 and Figure 6c, Spectrum 4 only the 

presence substrate can be detected. In Figure 6b, from Spectrum 3 Ca/P ratio of 1.19 can be 

measured, and the morphology is similar to Ti substrate. On Figure 6c, Spectrum 5 presence 

of HAp can be seen with Ca/P ratio of 1.54 and tubular-like morphology. Comparing the 

morphologies of catHAp and anHAp/TiO2 coatings on delaminated surfaces one can see 

rougher surface interface with presumed HAp incorporated into TiO2 layer. The decreased 

Ca/P ratio of 1.19 of catHAp can be explained by abrupt crystalline lattice. On the other hand, 

in the case of anHAp/TiO2 the value of 1.54 is closer to stoichiometric HAp (1.67) which is 

the most stable calcium phosphate found in the body. 

From the presented results it can be concluded that novel suggested process of in situ 

simultaneous anHAp/TiO2 deposition with Ti surface anodization gives much better results 

that catHAp deposition regarding adhesion. Not only that sintering process, which is needed 

for catHAp deposition can be skipped, but the process itself leads to Ti surface modification, 

which happens in two-step. From the presented results it can be concluded that first step is 

simultaneous Ti anodization and HAp deposition, where HAp crystals incorporate in the 

anodized Ti surface. This means that TiO2 is also generated on the Ti substrate simultaneously 

with HAP coating. After the anodization of Ti is finished, HAp is further grown on this 

surface, having much better adhesion than cathaphoresic process. It can be seen that 

anHAp/TiO2 has excellent coverage of the surface with a firm deposit that is not 
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delaminating. The obtained coating can be good material for bone implants due to solving 

HAp brittleness.  

Further evidence of presence of HAp coating on titanium, and hence its functional 

groups are characterized by ATR-FTIR spectroscopic method. Figure 7 illustrates the ATR-

FTIR spectrum of anHAp/TiO2 coating and anodized Ti that also suggested the success of the 

deposition of hydroxyapatite by in situ electrophoretic deposition. 

 

Figure 7.  

 

 In Figure 7 can be notice very weak and wide absorption band at around 770 and 1500 

cm−1 can be assigned to the vibration of Ti-O bonds of nanoporous TiO2 anodized layer [44]. 

The spectra of anHAp/TiO2 coating display typical PO4
3 – characteristic absorption bands of 

hydroxyapatite that are observed in the 950-1100 cm−1 [28, 45-47]. Two absorption bands 

were clearly distinguished at the following wave numbers 1041 and around 718 cm−1 in the 3 

and 1 phosphate mode region [44, 45, 48]. Meanwhile, additional weak bands at 872, 1402, 

and 1476 cm−1 are assigned to carbonate species (CO3
2−) in the apatite lattice [28, 45, 46, 49]. 

The positions of the carbonate bands indicate partial substitution of carbonate groups in HAp 

phase with chemical formula Ca10(PO4)6(OH)2, the predominance of B-type carbonate 

hydroxyapatite. FTIR is sensitive technique to these carbonate substitutions and a very small 

amount of carbonate can be detected this way [28, 45]. These detected absorption bands in 

FTIR spectra might originate from the dissolution of CO2 from the atmosphere in the 

electrolyte [49]. The B-type carbonate substitution is the preferential substitution in the 

human bone and is known to have better bioactivity and osteoinductivity [30, 50, 51]. In the 

FTIR spectrum of anHAp/TiO2 coating (Figure 7), the wide band at 3170 cm−1 is attributed to 

the OH− stretching vibration of H2O molecules. The absorption band at cca. 1650 cm−1 is 
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from absorbed water (bending modes). The observed functional groups and their 

corresponding assignments are presented in Table 3. 

 

Table 3.  

 

4. Conclusions 

 Nano-hydroxyapatite coating has been successfully synthesized by novel in situ 

method of anaphoretic deposition on titanium substrate with simultaneous Ti surface 

anodization. The formation of hydroxyapatite coating was confirmed by Scanning Electron 

Microscopy, Energy Dispersive Spectroscopy, X-ray diffraction (XRD) and Attenuated Total 

Reflection Fourier transform infrared spectroscopy (ATR-FTIR). It can be concluded that 

with good preparation and proper choice of suspension medium leading to stable negative 

micelle HAp obtains excellent coverage of the surface with a firm deposit that is not 

delaminating. This coating has good properties to be used as a material for bone implants. 

From the presented results it can be concluded that novel suggested process of in situ 

simultaneous anHAp/TiO2 deposition with Ti surface anodization gives much better results 

that catHAp deposition regarding adhesion. It does not need sintering process, and 

simultaneous Ti anodization and HAp deposition occur, where HAp crystals incorporate in 

the anodized Ti surface. This means that TiO2 is generated also on the Ti substrate 

simultaneously with HAP coating. The presence of distinct phosphate ATR-FTIR absorption 

bands goes in favor of statement that our process leads to formation of anHAp/TiO2 

composite coating on Ti surface. Hence, from XRD results it could be concluded that the 

electrophoretic composite apatite deposition has been successful due to appearance of 

hydroxyapatite diffraction peaks at 2 = 25.85 and 31.6°. Generally, it enhances the surface 

area in contact with fluids, and thus leads to faster regeneration of tissue. One can conclude 
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that with appropriate experimental conditions and proper choice of electrolyte leading to 

stable negative HAp micelle excellent coverage of the surface can be obtained. 
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Table 1. EDS measurements of catHAp and anHAp/TiO2 coatings on Ti substrate 

Coating O, at% P, at% Ca, at% Ti, at% Ca/P 

Cathaphoretic HAp 

coating 

65.40 12.74 21.77 0.10 1.71 

Anaphoretic needle-

like HAp coating 

70.73 2.61 4.54 22.12 1.74 

Anaphoretic granular 

HAp coating 

50.76 6.57 11.49 31.18 1.75 

 

 

Table 2. EDS measurements of catHAp and anHAp/TiO2 scratched surfaces 

Scratch  O, at% P, at% Ca, at% Ti, at% Ca/P 

Cathaphoretic HAp 

coating 

32.17 - - 67.83 - 

Anaphoretic HAp 

coating 

27.55 - - 72.45 - 

Delamination O P Ca Ti Ca/P 

Cathaphoretic HAp 

coating 

58.59 2.34 2.78 36.28 1.19 

Anaphoretic HAp 

coating 

62.60 3.26 5.02 29.12 1.54 

 

 

Table 3. Some important functional groups assignments of HAp coating 

Wavenumber, cm-1  Stretching mode  Functional group 

3170 Ion Stretching  H2O/OH-  

1650 Out of plane bending mode H2O 

1402, 1476 Asymmetric stretching  CO3
2-  

1041  Asymmetric stretching  PO4
3- 

872 Out of plane bending mode  CO3
2- 

718 Asymmetric bending vibration  PO4
3- 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

22 
 

 

Figure captions 

 

Figure 1. SEM microphotographs of: a) catHAp coating, magnification x200, b) catHAp 

coating, magnification x1500, c) anHAp/TiO2 coating, magnification x200 and d) ) 

anHAp/TiO2 coating, magnification x2000 

 

Figure 2. SEM microphotograph of catHAp powder delaminated after ultrasonification 

treatment 

 

Figure 3. FE-SEM microphotographs of composite anHAp/TiO2 coating: a) magnification x500 

and b) magnification x5000. Different HAp morphologies can be observed, blue arrow points 

granular and red one points needle-like HAp. 

 

Figure 4. FE-SEM microphotographs of a) anodized Ti surface and b) titanium surface after 

removing anHAP/TiO2 coating 

 

Figure 5. XRD diffractogram of anHAp/TiO2 coating with specific phase analysis.  

 

Figure 6. SEM microphotographs of the scratched surfaces with EDS measurement places of: 

a) anodized titanium, b) catHAp coating and c) anHAp/TiO2 coating. 

 

Figure 7. ATR-FTIR spectrum of anodized titanium (bottom red line) and anHAp/TiO2 coating 

(top black line) 
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Highlights 

 In-situ synthesis of hydroxyapatite/TiO2 coating on Ti via anaphoretic deposition 

 Simultaneous deposition of HAp and anodization of Ti 

 Highly adherent, compact and strengthened composite coating was obtained 

 Improved adhesion compared to cataphoretic hydroxyapatite coatings 

 Excellent coating coverage 
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