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Highlights 

 PAHs degradation from diesel fuel aromatic fraction was investigated 

 Novel method was applied for the visualization degraded compounds in the GC×GC-

TOF MS chromatograms 

 Oerskovia sp. CHP-ZH25 has successfully degraded different PAHs from diesel fuel 

aromatic fraction  

 

Abstract 

Polycyclic aromatic hydrocarbons (PAHs) from petroleum and fossil fuels are one of the most 

dominant pollutants in the environment. Since aromatic fraction from petroleum diesel fuel is 

mainly composed of PAHs, it is important to discover new microorganisms that can biodegrade 

these compounds. This article describes the biodegradation of the aromatic fraction separated 

from petroleum diesel fuel using the strain Oerskovia sp. CHP-ZH25 isolated from petroleum 

oil-contaminated soil. The biodegradation was monitored by gravimetry and GC×GC-TOF MS. 

An innovative method was applied to visualize degraded compounds in the data provided by a 

GC×GC-TOF MS. It was shown that Oerskovia sp. CHP-ZH25 degraded 77.4 % based on 

gravimetric analysis within 30 days. Average rate of degradation was 14.4 mg/L/day, 10.5 

mg/L/day and 4.0 mg/L/day from 0-10 day, 10-20 and 20-30 day, respectively. The order of 

PAH degradation based on decrease in peak volume after 30 days of incubation was as follows: 

dibenzothiophene derivatives> benzo[b]thiophene derivatives > naphthalene derivatives > 

acenaphthene derivatives> acenaphthylene/biphenyl derivatives> fluorene derivatives > 

phenanthrene/anthracene derivatives. Here we demonstrated that Oerskovia sp. CHP-ZH25 could 

potentially be a suitable candidate for use in bioremediation of environments polluted with 

different PAHs. 

 

 

 

Keywords: petroleum diesel fuel, PAHs, biodegradation, Oerskovia sp., GC×GC-TOF MS 
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1. Introduction 

Petroleum diesel, a product of crude oil refining, is a complex mixture of paraffins (75%) and 

aromatic hydrocarbons (25%) [1]. When released into the environment, it is very toxic to plants, 

animals and humans [3]. Remediation of diesel-contaminated sites can be done using both 

physico-chemical and biological methods, but biological methods are more economical and 

efficient [4, 5]. Many authors have investigated the degradation of diesel fuel, but the greatest 

challenge is degradation of the aromatic fraction, which is mainly composed of polycyclic 

aromatic hydrocarbons (PAHs) [2, 6].  

PAHs are a group of compounds with two or more fused aromatic rings [8, 9]. They are very 

hydrophobic, with low aqueous solubility and their bioavailability is limited by their high 

molecular weights and low water dissolution rates [10, 11]. Despite these facts, many 

microorganisms have been isolated primarily for their ability to transform and degrade PAHs to 

simple molecules [7, 12, 13]. Actinomycetes are a group of bacteria that are very often used in 

the bioremediation of various PAHs, due to their resistance to harsh conditions (drought, alkaline 

pH) and their production of extracellular enzymes and biosurfactants [12-14]. Strains that are 

used usually belong to the genera Mycobacterium, Rhodococcus, Nocardia and Gordonia, but it 

is assumed that a lot more of the actinobacteria members could degrade PAHs [6, 7, 14].   

The aim of this study was to isolate new bacterial strains that have the potential to degrade 

PAHs. Six bacterial strains were isolated from a bacterial consortium that was collected from a 

petroleum oil-contaminated site and was previously used to biodegrade different complex 

hydrocarbons [15]. After evaluation of bacterial growth on various aromatic carbon sources it 

was concluded that strain CHP-ZH25 belonging to genus Oerskovia showed the highest potential 

for the biodegradation of PAHs. Bacteria of the genus Oerskovia belong to the phylum 

Actinobacteria, and they are capable of starch and cellulose degradation and sulfur removal from 

dibenzotiophene [16, 17]. Furthermore, it was shown that they can tolerate pure and mixtures of 

saturated, monoaromatic and polyaromatic hydrocarbons [18], and recently, Haleyur et al (2018) 

showed that they could degrade naphthalene, phenanthrene and pyren [19]. However, to our 

knowledge, the degradation of aromatic hydrocarbons from a complex mixture was never 

determined. The objective of this study was to assess the biodegradation of aromatic fraction 

from petroleum diesel fuel by Oerskovia sp. Since diesel fuel aromatic fraction is a mixture of 

various polycyclic hydrocarbons, comprehensive two-dimensional gas chromatography-time-of-

flight mass spectrometry (GC×GC-TOF MS) was used to evaluate and improve analysis of the 

PAHs removal.  

 

2. Experimental 

2.1. Isolation, characterization and identification of bacteria 

2.1.1. Isolation  

Bacterial strains CHP-ZH25, CHP-NR31, CHP-315, CHP-A35, CHP-Y37 and CHP-YG38 were 

isolated from petroleum oil-contaminated soil sampled from Serbia [15], by repeated inoculation 

onto mineral medium with 2000 ppm of diesel as the only source of carbon and M3 medium 

[20,21]. 

 

2.1.2. Growth on different carbon sources 
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To evaluate bacterial growth on various carbon sources, each strain was inoculated on mineral 

medium agar [20] supplemented with different aromatic compounds: 3,4-dihydroxybenzoic acid 

(500 ppm), 4-hydroxybenzoic acid (1000 ppm), sodium-benzoate (500 ppm), phenol (200 ppm), 

phenanthrene (200 ppm), diesel fuel (2000 ppm) and motor oil (200 ppm). The bacterial strains 

were than incubated for 3 days on 28 °C. 

 

2.1.3. Sensitivity to heavy metals 

The sensitivity of the six bacterial strains to heavy metals was tested by the disk diffusion 

method in Mueller-Hinton agar [22]. Increasing concentrations of Cd(CH3COO)2, NiCl2, 

CuSO4x5H2O, Zn(CH3COO)2, and K2Cr2O7 were used.  

 

2.1.4. Identification of bacterial strains 

For preliminary identification of six bacterial strains, API tests (BioMerieux) were utilized. The 

API Coryne, 20E and 20NE were used according to manufacturer’s instructions. 

Fatty acid methyl esters of isolate CHP-ZH25 were determined based on the method previously 

described [23]. The samples were then analyzed by GC/MS. The gas chromatograph/mass 

spectrometer system used was Agilent 7890A–5975C inert XL EI/CI with HP-5 ms (30 m× 0.25 

mm ×0.25 µm) column.  Helium gas was used and the oven program was set to: 50 °C for 0 min, 

then 4.3–285 °C for 5 min. For FAME identification, standard bacterial acid methyl esters 

(BAME, Supelco) and the NIST5a.L database were used. 

For analysis of 16S rRNA, genomic DNA was extracted with Dneasy Blood & Tissue kit 

(Qiagen). The 27F (AgAgTTTgA TCM Tgg CTC Ag) and 1492R (Cgg CTA CCT TgT TAC 

gAC TT) primers were used for the amplification of genomic DNA by PCR [22, 23]. The 

sequencing was performed by Macrogen Inc, Netherland. According to 16S rRNA gene 

sequence analysis, strains CHP-ZH25, CHP-NR31, CHP-315, CHP-A35, CHP-Y37 and CHP-

YG38 were identified  as Oerskovia sp. CHP-ZH25 (JX430000), Rhodoccocus sp. CHP-NR31 

(JX965395), Gordonia sp. CHP-315 (JX429999), Micrococcus sp. CHP-A35 (JX965396), 

Sphingobacterium sp. CHP-Y37 (JX965397) and Cupriavidus sp. CHP-YG38 (JX965398), 

respectively.  Obtained sequences were compared to NCBI GenBank database using the BLAST 

program. The software MEGA 7.0.21 was used to construct a phylogenetic tree. Strains were 

deposited at the Institute of Soil Science (Belgrade, Serbia) culture collection ISS WDCM375 

with the following accession numbers: Oerskovia sp. HP-ZH25 - ISS 621; Rhodococcus sp. 

CHP-NR31 - ISS 622; Gordonia sp. CHP-315 - ISS 623; Micrococcus sp. CHP-A35 - ISS 620; 

Sphingobacterium sp. CHP-Y37 - ISS 624 and Cupriavidus sp. CHP-YG38 - ISS 625. 

 

 

2.2. Fractionation of petroleum diesel fuel aromatic fraction 

The aromatic fraction of diesel fuel, purchased at a local gas station in Serbia, was prepared 

using the procedure previously reported [26]. Briefly, diesel fuel (5 mL) was passed through a 

column (30 ×1.5 cm), with 10g of silica gel (70-230 mesh, Merck KGaA, Germany). The first 

two fractions (alkanes and branched/cyclic alkanes) were eluted with 30 mL and 10 mL of 

hexane, respectively. The third, aromatic fraction was eluted with a mixture of hexane:toluene 

(3:1, v/v). This procedure was repeated several times using fresh columns, to obtain enough 

aromatic fractions for the biodegradation experiment. The percentage of aromatic fraction in 
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diesel fuel was determined by gravimetry. The aromatic fraction and diesel fuel were analyzed 

by Vario EL III CHNS/O Elemental Analyzer (Hanau, Germany) to assess the content of carbon, 

nitrogen, oxygen and sulfur. 

 

2.3. Biodegradation experiment 

Bacterial strain CHP-ZH25 was inoculated onto solid mineral medium [20] with 200 ppm of 

petroleum diesel fuel aromatic fraction as the only source of carbon. It was incubated at 28 °C 

for 7 days. After three passes on this medium, the strain was then transferred from solid mineral 

medium with 200 ppm of aromatic fraction to an Erlenmeyer flask containing 100 ml of fresh 

liquid mineral media with 300 ppm of aromatic fraction and incubated at 28 °C for 7 days. The 

resultant culture was then centrifuged (4500 rpm) and re-suspended in sterile quarter strength 

Ringer's solution three times. Aliquots (1 mL) of the cell suspension were then inoculated into 

100 mL of the liquid mineral medium [20] with 300 ppm of aromatic fraction. The inoculated 

medium was incubated at 28 °C on a rotary shaker at 150 rpm. An abiotic control was prepared, 

which contained everything except the bacterial culture and was processed the same way as the 

media with bacteria. Both bacterial culture and the abiotic control were prepared in triplicate. 

The biodegradation process was monitored every 10 days for 30 days. Bacterial numbers were 

estimated using the plate counting method on nutrient agar plates. Biodegradation was stopped 

after 30 days by adding 2 % HgCl2, and the remaining aromatic fraction was extracted with three 

volumes of hexane. The amount of remaining aromatic fraction was determined by gravimetry. 

Extracts were dissolved in 8 mL of hexane and passed through a clean-up column (8 × 0.5 cm) 

filled with florisil (60-100 mesh ASTM, Merck KGaA, Germany) and anhydrous sodium 

sulphate (Merck KGaA, Germany). The resultant cleaned extracts were analyzed with GC×GC-

TOF MS. 

 

2.4. Comprehensive two dimensional gas chromatography/mass spectrometry 

Extracts that passed through a clean-up column were evaporated to constant weight, dissolved in 

1 mL of hexane and analyzed with GC×GC-TOF MS, system reported in our previous studies 

[27, 28]. The Agilent 7890A gas chromatograph (Agilent, Wilmington, DE, USA) was equipped 

with a GERSTELMPS2 autosampler. An InertCap 5MS/Sil (45m × 0.25 mmi.d., 0.10 µm) 

column was connected with a BPX50 (0.9 m×0.10 mmi.d., 0.10 µm) column with a loop jet 

modulator (Zoex KT2006, Zoex Corp.) and a high resolution (HR) TOFMS (JeolAccuTOFGCv 

4G), which was tuned to enable measurement at high mass resolution, i.e. m/Δm = 10,000 

(FWHM). The samples were injected at 280 °C splitless. Helium was used as carrier gas with a 

velocity of 1.8 mL/min. The oven was programmed from 50 °C (held for 2 min) to 300 °C at 3 

°C/min. The modulation period was 4 s. The temperature of the transfer line was 300 °C, and the 

ion source temperature was 280 °C. The electron energy was 70 eV. The scan range was m/z 33-

850. The GC×GC-TOF MS data were analyzed using GCImage R2.6 for HRMS (GCImage 

LLC). 

 

3. Results and discussion 

3.1. Identification and characterization of bacteria 
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Six bacterial strains were isolated from soil contaminated with petroleum oil. The ability of these 

strains to utilize various compounds as the only source of carbon and their sensitivity to heavy 

metals was evaluated. The results are shown in Table 1. 

Among the examined strains, CHP-ZH25, CHP-Y37 and CHP-NR31 were capable of growth on 

different organic substrates, especially diesel fuel and motor oil, and showed relatively high 

resistance to heavy metals, especially nickel. Thus, these strains were further examined for their 

ability to grow on diesel fuel aromatic fraction. After three passes on solid mineral medium with 

aromatic fraction as the only source of carbon, strain CHP-ZH25 was estimated to grow the most 

efficiently compared to other isolated strains and was selected for further study. 

For the assessment of biochemical properties of strain CHP-ZH25, the Api Coryne test was used. 

Strain CHP-ZH25 was positive for the following reactions: oxidase, catalase, nitrate reduction to 

nitrite, pyrazimidase, α-glucosidase, β-galactosidase, urease, β-glucosidase, gelatin hydrolysis, 

and fermentation of glucose, ribose, xylose, maltose, lactose, sucrose and glycogen. The negative 

reactions were pyrrolidonylarylamidase, N-acetyl-β-glucosidase, alkaline phosphatase, β-

glucuronidase, pyrazinamidase and mannitol fermentation. 

FAME analysis showed that the predominant fatty acids produced by CHP-ZH25 were anteiso-

pentadecanoic, iso-pentadecanoic and hexadecanoic acid (Table 1). These results are in 

accordance with previously published data for genus Oerskovia [29]. 

 

Table 1. Growth on different carbon sources and sensitivity to heavy metals.  

 Oerskovia 

sp. CHP-

ZH25 

Rhodoccocus 

sp. CHP-

NR31 

Gordonia 

sp. CHP-

315 

Micrococcus 

sp. CHP-

A35 

Sphingobacterium 

sp. CHP-Y37 

Cupriavidus 

sp. CHP-

YG38 

Growth on different carbon sources1 
Phenol + + + - + - 
Phenanthrene + + - - + - 
3,4- 

dihydroxybenzoic 

acid 

- - - - - - 

4-hydroxybenzoic 

acid 
+ + + + + + 

Sodium benzoate - + - - + - 
Motor oil +++ +++ +++ + + + 
Petroleum diesel 

fuel 
+++ +++ ++ + +++ + 

Sensitivity to heavy metals2 
Cd 2.5 <1 10 2.5 10 10 
Ni 50 >50 10 50 10 10 
Cu 10 5 25 10 10 10 
Zn 10 2.5 10 10 10 2.5 
Cr 10 2.5 2.5 10 >10 5 

Cellular fatty acid composition of the strain CHP-ZH25, % of total detected3 

Fatty 

acid 
i14:0 n14:0 i 15:0 ai 15:0 n15:0 i 16:0 n16:0 i 17:0 ai17:0 n17:0 

% 0.62 4.49 10.24 62.32 1.65 3.27 10.6 5.48 0.21 1.13 
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1The absence of growth or growth are marked as – or +, respectively. For petroleum diesel fuel and motor oil, the 

growth intensity is marked with + (minimum growth), ++ (medium growth) or +++ (best growth) 2The resistance is 

expressed as minimal inhibitory concentration (mmol/L).3Fatty acids are designated in terms of the total number of 

carbon atoms: number of double bonds. The prefixes n, i and ai indicate normal (unbranched) chain, iso and anteiso 

branching, respectively. Values <0.20 % are omitted. 

 

The identification of the six bacterial species according to BLAST analysis is given in the 

Supplementary material (Table S1). According to 16S rRNA gene sequence analysis, strain 

CHP-ZH25 was identified as Oerskovia sp. CHP-ZH25 (JX430000). This sequence was 

compared to the NCBI GenBank database using the BLAST program, and the most similar type 

strain was Oerskovia enterophila DSM strain 43852 (NR_026239). The relationship between 

Oerskovia sp. CHP-ZH25 and five other bacterial strains that we considered is shown in Figure 

S1 (Supplementary material). Oerskovia sp. CHP-ZH25 differs biochemically from the type 

strain only in two reactions, pyrazinamidase and gelatin hydrolysis. Also, compared to the type 

strain Oerskovia enterophila DSM 43852, CHP-ZH25 produces a higher percentage of i-C15:0 

and a lower percentage of ai-C17:0 [30]. The bioremediation potential of Oerskovia sp. CHP-

ZH25 for degradation of aromatic compounds was further evaluated in biodegradation 

experiment.  

 

3.2. Biodegradation experiment 

The aromatic fractions separated from ten volumes of 5 mL of petroleum diesel fuel were 

evaporated to constant weight. The obtained weights ranged between 88 mg and 116.7 mg, 

which accounted for 1.76-2.3% of total diesel fuel mass. Elemental analysis showed that diesel 

fuel contained 88.8% carbon, 15.0% hydrogen, 0.5% nitrogen and 0.5% sulfur. The aromatic 

fraction separated from diesel fuel contained 86.9% C, 11.0% H, 0.4% N and 1.7% S. All 

aromatic fractions were combined in composite sample to be used in further study. 

The aromatic fraction degradation potential of Oerskovia sp. CHP-ZH25 was assessed 

gravimetrically after 10, 20 and 30 days in triplicate experiment. Percentage of aromatic fraction 

degradation with bacteria and in abiotic control together with the bacterial counts at 10, 20 and 

30 days are shown in Figure 1. Average rate of degradation, calculated from the gravimetric 

results, was 14.4 mg/L/day, 10.5 mg/L/day and 4.0 mg/L/day from 0-10 day, from 10-20 and 

from 20-30 day, respectively. The gravimetric loss in the abiotic control after 30 days incubation 

was similar to that previously reported [31, 32]. The number of bacteria had increased steadily 

until the 20th day, when the reduction in number was detected, as a result of accumulation of 

products of microbial metabolisms and substrate depletion. For the analysis of biodegradation of 

naphthalenes, acenaphthylene/biphenyls, acenaphthenes, fluorenes, phenanthrenes/anthracenes, 

benzo[b]thiophene and dibenzothiophenes using Oerskovia sp. CHP-ZH25, GC×GC-TOF MS 

analysis was applied. 
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Figure 1. Percentage of aromatic fraction degradation and the number of Oerskovia sp. CHP-

ZH25. Closed and open circle symbols on solid lines denote the percentage of aromatic fraction 

degradation with bacteria and in abiotic control, respectively, and closed triangles on dash line 

number of bacteria. 

 

3.3. GC×GC-TOF MS analysis 

Figures 2A and 2B show the two-dimensional total ion chromatograms (2D TICs) of cleaned 

extracts from the abiotic control and Oerskovia sp. CHP-ZH25 cultured on diesel fuel aromatic 

fraction after 30 days of incubation. Changes after 30 days of incubation for various aromatic 

compounds can be seen. Also, since the fractionation of diesel fuel isn’t complete and some 

aliphatics remain in the separated aromatic fraction, decrease in aliphatic alkenes can be 

observed.  The most noticeable decrease is found in the area up to a 40 min retention time, where 

the lower molecular weight compounds are found. This was expected, since these compounds are 

more volatile and more susceptible to microbial degradation [33, 34].  

Many studies have shown that microbial consortia are more efficient in biodegradation than 

single cultures, especially in the case of complex pollutant mixtures [10, 35, 36]. However, 

testing of individual strains of microorganisms with respect to degradation ability and the ability 

to survive is necessary for the selection of strains for use in bioaugmentation. Most of the studies 

on PAH degradation were carried out with different Actinobacteria, mainly Rhodoccocus, 

Micrococcus and Mycobacteria [6, 7, 10, 14]. The Oerskovia sp. strain was only recently 

confirmed to be able to utilize PAHs as a sole source of carbon [19], however no data is 

available on the degradation of PAH mixtures. 
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Figure 2. GC × GC-TOFMS chromatograms of: (A) Petroleum diesel fuel aromatic fraction in 

abiotic control after 30 days; (B) Petroleum diesel fuel oil aromatic fraction in test with 

Oerskovia sp. after 30 days; (C) Compounds from petroleum diesel fuel aromatic fraction 

degraded by Oerskovia sp. CHP-ZH25 (chromatogram obtained using equation 1) 

 

To analyze in more detail the compounds metabolized by Oerskovia sp. CHP-ZH25, change of 

mass spectra during the degradation was estimated. Firstly, a factor, F(i), representing the change 

of each compound, i.e. each data point, (i )was calculated by the following equation: 

 

F(i) = (TAC(i) – TZH(i))/TAC(i)               (1) 

     

Where TAC(i) and TZH(i) is the total intensity of each compound (data point) (i) of abiotic control 

and Oerskovia sp. CHP-ZH25 after 30 days of degradation, respectively. Each changed mass 

spectrum was estimated by multiplying the factor F(i) by each compound (data point) of abiotic 
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control. Total intensity values were used to provide the factor since mere subtraction of each 

mass spectrum would likely create artificial mass spectra which do not exist in reality, because 

intensity and precise mass of spectra fluctuated on each measurement due to instrumental 

characteristic. Therefore exact mass spectra could not be compared by simple method such as 

subtraction. This method allowed the visualization of degraded compounds instead of the 

compounds remaining after the degradation. The results of this novel method for depicting 

changes in the mass spectra are shown in Figure 2C, depicting 2D-TIC of compounds from the 

diesel fuel aromatic fraction degraded by Oerskovia sp. CHP-ZH25 (difference between Fig 2A 

and Fig 2B). 

To assess the degradation of different classes of aromatic compounds, selective ion 

chromatograms were created using ±0.1 of the theoretical mass. The following classes of 

compounds were chosen to analyze: naphthalenes, acenaphthylenes/biphenyls, acenaphthene, 

fluorenes, phenanthrenes/anthracenes, benzo[b]thiophene and dibenzothiophenes. To analyze the 

relative change of each compound during the degradation, the above formula was applied. 

Selected Ion Chromatograms (SICs) or Recomposed Ion Chromatograms (RICs) for PAHs were 

drawn from the data extracted and summed the intensities of mass spectra in the mass range as 

Table S2.The two dimensional single ion chromatograms (2D-SICs) representing the degradation 

of various compounds are depicted in Figures S2-15.  Based on obtained chromatograms, it is 

clear that the lower molecular weight compounds (PAHs derivatives) were largely degraded by 

Oerskovia sp. CHP-ZH25. Relative percentage of degradation of selected PAHs derivatives 

based on decrease of total peak volume value during incubation is given in Table S3. The order 

of degradation was as follows: dibenzothiophene derivatives > benzo[b]thiophene derivatives > 

naphthalene derivatives > acenaphthene derivatives > acenaphthylene/biphenyl derivatives > 

alkyl naphthalenes > fluorene derivatives > alkyl acenaphthenes > alkyl benzo[b]thiophenes > 

alkyl dibenzothiophenes > phenanthrene/anthracene derivatives > alkyl acenaphthylenes > alkyl 

fluorenes > alkyl phenanthrenes/anthracenes. According to this, it was shown that the most 

susceptible to biodegradation by Oerskovia sp. CHP-ZH25 were dibenzothiophene derivatives 

(m/z 184.0347) and benzo[b]thiophene derivatives (m/z 134.0190) which were almost completely 

degraded (97.9 and 72.7%, respectively), followed by naphthalene derivatives (68.8%, m/z 

128.0626). The acenaphthene derivatives (m/z 154.0782), acenaphthylene/biphenyl derivatives 

(m/z 154.0783) and alkyl naphthalenes, were degraded to more than 50%. Fluorene derivatives 

(m/z 166.0783)  and phenanthrene/anthracene derivatives (m/z 178.0783) were degraded up to 

46.6% and 22.7%.  

The degradation of alkyl PAHs (m/z values used are shown in Table S2, Figure S2-15) was 

dependent on the degree of alkylation, as the highly alkylated compounds were not efficiently 

degraded [34]. The order of degradation of alkyl PAHs was as follows: alkyl naphthalenes 

(55.2%), alkyl acenaphthenes (35.0%), alkyl benzo[b]thiophenes (29.6%), alkyl 

dibenzothiophenes (23.3%), alkyl acenaphthylenes (19.0%), alkyl fluorenes (5.4%) and alkyl 

phenanthrenes/anthracenes (0.5%).  

It is widely acknowledged that lower molecular weight PAHs are a more suitable carbon sources 

for microbes [34, 37, 38]. The higher molecular weight PAHs can be degraded after the lower 

weight ones, which are the preferred substrates, are depleted or they can be co-metabolized with 

other substrates [39, 40]. However, the presence of phenanthrene could inhibit pyrene 

degradation, or fluoranthene could inhibit anthracene and pyrene degradation [9, 41].  
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The most interesting is the fact that dibenzothiophene and benzo[b]thiophene derivatives were 

degraded to a higher extent compared to other studied PAH derivatives. It should be emphasized 

that, as previously stated, bacteria of the genus Oerskovia belong to the phylum Actinobacteria, 

which are capable of sulfur removal from dibenzotiophene [17] This suggest that Oerskovia sp. 

CHP-ZH25 is not only capable to grow on PAH molecules and to use them as a only source of 

carbon, but also to use heteroatom containing PAHs, such as dibenzothiophene and 

benzo[b]thiophene.  

 

Conclusion 

Based on the available literature, the current study is the first report of Oerskovia sp. using the 

PAH mixtures as the only source of carbon and the first report on evaluation of biodegradation of 

the aromatic fraction from petroleum diesel fuel using GC×GC-TOF MS. This work has 

demonstrated that bacterial strain Oerskovia sp. CHP-ZH25 (JX430000) successfully degraded 

derivatives of dibenzothiophene, benzo[b]thiophene, naphthalene, acenaphthene, 

acenaphthylene/biphenyl, alkyl naphthalenes, fluorene, alkyl acenaphthenes, alkyl 

benzo[b]thiophenes, alkyl dibenzothiophenes, phenanthrene/anthracene,  alkyl acenaphthylenes, 

and to some extent alkyl fluorenes and alkyl phenanthrenes/anthracenes. Hence, Oerskovia sp. 

CHP-ZH25 could potentially be a suitable candidate for use in bioremediation of environments 

polluted with different PAHs. 
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