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Abstract: 

In this study, WO3 doped TiO2 powders were synthesized via sol-gel method combined 

with a hydrothermal process. The effect of sintering temperature on mesoporous structure 

and catalytic activities of these powders were investigated. The physical analysis via X-ray 

diffraction indicates that prepared samples are a mixture of anatase and rutile TiO2 phases. 

X-ray peak analysis is used to evaluate the crystallite size and lattice strain by the 

Williamson-Hall analysis. Considering all the reflections of the anatase phase the lattice 

strain ranging from c = 9.505 to c = 9.548 is calculated, suggesting that microstrain 

decreases when calcination temperature increases. N2 adsorption-desorption analysis shows 

that the surface area and pore volume decrease with increasing temperature and that WOx-

TiO2 powders primarily consist of mesopores. Sintering temperature induced a change in 

textural properties causing a systematic shift towards larger mesopores. Simultaneously, 

photoactivity in decolorization of methyl orange increases with increasing calcination 

temperature up to 700 °C, followed by significant decrease with its further increase. 

Keywords: WOx-TiO2 powders; Sintering; Mesoporous structure; Photocatalytic 

degradation; Azo dye.  

 

 

 

1. Introduction 

 

 TiO2 is an excellent material for environmental applications, including 

photodegradation of various pollutants and purification of water and air [1-3]. Conventional 

photocatalytic processes for organic decomposition in waste waters use TiO2 powder as 

photocatalyst. Finely dispersed TiO2 particles are usually suspended in wastewater and placed 

under UV irradiation [4, 5]. When TiO2 is illuminated by UV light, electrons and holes are 

photogenerated within, thus oxidizing the organic compounds dissolved in water. To increase 

the overall efficiency of this process it is very important to develop methods for broadening 

the spectrum of absorbed light in the visible range and increase the photocatalytic properties 

of TiO2 in both UV and visible range [6]. 

 To improve the photocatalytic efficiency of such materials many efforts have been 

made, including various synthesis pathways and subsequent modification of TiO2 powder 

properties. Coupling TiO2 with other semiconducting materials is considered beneficial 

because coupling two semiconductors with different redox energy levels can increase the 
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separation of their corresponding conduction and valence bands [7]. So far, the most 

successful results have been achieved through the loading of metal or metal oxides on the 

surface of TiO2 [8-10]. Generally, metal oxides such as WO3 and MoO3 proved as excellent 

candidates for coupling with TiO2, due to increased photocatalytic activity of [11, 12]. 

 The structural and microstructural, morphological and photocatalytic properties of 

TiO2 nanocrystals are strongly dependent on the synthesis process [13] and calcination 

temperature [14, 15].  

Sol-gel processing has become one of the most successful techniques for preparation 

of TiO2 powders and gels [16, 17]. Nevertheless, TiO2 materials obtained by sol-gel 

processing are either amorphous or not well crystallized and consequently, they must undergo 

a suiTab. treatment to become active photocatalysts. In order to control crystallinity of TiO2 

thermal treatment is usually applied but the temperature must be carefully selected. 

The temperature of anatase to rutile phase transition is around 600 °C, depending on 

different factors such as defects, impurities and grain size. The relationship between the 

microstructure and elastic properties of the rutile phase has been widely discussed [18-20], 

while only a few studies have been conducted for the anatase phase [21]. 

X-ray powder diffraction (XRD) analysis is a simple and powerful tool to estimate 

the crystallite size and lattice strain. This is achieved by Williamson-Hall analysis that is a 

simplified method where the size and strain broadening are deconvoluted by considering the 

peak width as a function of 2θ [22]. These analyses are employed for estimating crystallite 

size and lattice strain in the present study. When microstrain is neglected, the coherently 

diffracted domain size can simply be evaluated by the Debye - Scherrer equation [23]. 

 In this study, WOx-TiO2 powders were prepared by sol-gel method combined with a 

hydrothermal treatment. WOx-TiO2 powders with varying amount of anatase and rutile phases 

are obtained by carefully controlling the sintering temperature. By combining two analytical 

techniques (XRD and N2 adsorption-desorption), we determined the correlation between the 

change of phase composition, nanoparticle growth, and textural properties with sintering 

temperature.  The strain associated with calcination of WOx-TiO2 samples at 500, 600, 650, 

700, 750 and 800 °C due to lattice deformation was estimated by a modified form of 

Williamson-Hall model. In order to estimate the photocatalytic activity of WOx-TiO2 

powders, methyl orange was employed in the photocatalytic tests. 

 

 

2. Experimental 

2.1. WOx-TiO2 powders synthesis 
 

 Titanium (IV) isopropoxide and tungstophosphoric acid were used for the synthesis 

of WOx-TiO2 powders in this study. All chemicals were of analytical grade. Amorphous 

powders were prepared by a sol-gel method. For the synthesis of samples, titanium 

isopropoxide was slowly dissolved in isopropyl alcohol. After that, an appropriate amount of 

H3PW12O40 (20 %) was dissolved in water and then added into solution drop by drop. The 

resulting mixture was heated to 45 °C until homogeneous hydrogel was formed. This 

hydrogel was subsequently heated to 200 °C at a heating rate of 2 °C/min and after that 

washed with hot water three times. The wet gel was annealed at 500, 600, 650, 700, 750 and 

800 °C for 3 hours, which resulted in the formation of WOx-TiO2 powders.  

 

 

2.2. WOx-TiO2 powders characterization 
 

The phase structure of samples was analyzed by X-ray diffraction method, using a 

Rigaku Ultima IV diffractometer in Bragg-Brentano geometry, with Ni-filtered CuKα 
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radiation (40 kV, 30 mA, λ=1.54178 Å). The structural and microstructural parameters of 

TiO2 samples were estimated by Williamson-Hall (WH) plots [22].  

 N2 adsorption-desorption isotherms of all samples were measured with an automatic 

adsorption apparatus (Sorptomatic 1990 Thermo Finnigan) at 77 K. The specific surface areas 

(SBET) were calculated by fitting the adsorption data to Brunauer–Emmett–Teller (BET) 

equation [24] and the pore size distributions were calculated by the Barrett-Joyner-Halenda 

method [25]. 

 

2.3. Photocatalytic tests 
 

Photocatalytic degradation of methyl orange (MO) was carried out in an open 

cylindrical thermostated Pyrex cell of 6.8 cm in diameter, corresponding to the surface area 

accessible to the light of 36.3 cm
2
. The experiments were performed with 100 mL solution 

containing 8 mg/L MO and 100 mg of WOx-TiO2 or pure TiO2 powders. Irradiation of the 

solutions was performed under the lamp that simulates solar radiation (Solimed BH 

Quarzlampen), with a power consumption of 300 W, housed 25 cm above the top surface of 

the solution. Illumination intensity on the top of the photocatalytic reactor was 850 lx. Prior to 

illumination, the suspensions were magnetically stirred in the dark for 30 min to achieve 

adsorption–desorption equilibrium. Aliquots of suspensions were collected at different time 

intervals for a total of 150 min. The aliquots were filtered through a 0.20 μm syringe 

membrane filter into standard quartz cuvettes with an optical path of 1 cm and directed to 

UV-Vis spectrometer (Thermo Electron Nicolet Evolution 500) to check the degradation of 

MO via its absorption peak at 464 nm. These absorption data were used in the determination 

of degradation of MO through comparison with the absorbance at a certain time as a 

percentage of the initial absorbance. 

 

 

3. Results and discussion 
 

 Physical properties of WOx-TiO2 powders often vary with preparation history and 

post-treatment. Therefore, as a first step, it is necessary to determine the structure of prepared 

samples.  

 
 

Fig. 1. XRD patterns of WOx-TiO2 powders for different sintering temperatures (A: anatase, 

R: rutile, W: tungsten oxide). 
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XRD patterns of prepared WOx-TiO2 powders (Fig. 1) without annealing feature weak broad 

peaks in the positions corresponding to characteristic peaks of the anatase phase. This is an 

indication of poorly crystallized and/or mostly amorphous solids. After annealing from 500 to 

800 °C all diffraction peaks become more intense, which is related to crystallization and 

particle growth. However, when the annealing temperature was elevated to 700 °C, small 

rutile peaks are observed, indicating the onset of anatase-to-rutile transformation. In 

previously published papers, the beginning of the transformation of anatase-to-rutile was 

observed in the range 400-1200 °C [26, 27], depending on the utilization of different raw 

materials, processing methods and methods for determination of the transition temperature. 

It was also observed that when annealing temperature goes above 600 °C, the Keggin 

molecule breaks up to form WO3 species. The orthorhombic WO3 and a non-stoichiometric 

form of tungsten oxide (WO2.92) were observed in the samples annealed at 700 and 800 °C. 

The variation of anatase-to-rutile ratio of WOx-TiO2 powders are correlated with annealing 

temperature and presented in Tab. I. Anatase (101) peak at 2θ = 25.48° and rutile (110) peak 

at 2θ = 27.58° were analyzed using the equation [28]: 
1

8.01













R

A

I

I
X         (1) 

where X is the weight fraction of rutile, and IA and IR are the X-ray intensities of anatase and 

rutile peaks, respectively. 

As can be seen, the anatase content estimated from equation 1 decreases from 100 to 

82 % with increasing sintering temperature up to 800 °C. Also, results indicate that at 700, 

750 and 800 °C all WOx-TiO2 samples contain much lower fraction of rutile than pure TiO2 

exposed to the same temperature treatment, which is usually transformed to rutile phase by 

over 90 % [26]. Obviously, WO3 hindered the phase transformation from anatase to rutile 

during sintering. Annealing at elevated temperatures can induce the sintering of crystals, 

resulting in an increase in the crystallite size. Gaining enough energy could position the 

crystallite in proper equilibrium sites resulting in improved crystallinity and degree of 

orientation [29]. 

 

 
 

Fig. 2. Dependence of the ‘c/a’ ratio for the anatase phase of WOx-TiO2 samples. The insert 

shows the corresponding variation of ‘a’ and ‘c’ lattice parameters. 
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The value of lattice parameters a = b and c of anatase phase in samples calcined at various 

temperatures as a function of the growth of crystallites are shown at Fig. 2. The continuous 

increase of the unit cell ratio (c/a) occurs with increasing calcination temperature and 

concurrent crystallite growth, mainly originates from stretching in the direction of the c-axis 

and, to a lesser extent, in the small shortening of a-axis (insert of Fig. 2). This particular value 

of c-axis together with a relatively weak variation of a-axis has been identified for 

nanocrystalline TiO2 [30]. 

 XRD pattern can be utilized to evaluate the narrowing of peaks with the growth of the 

crystallites and lattice strain. If strain contribution is neglected, the particle size can be 

estimated from the Scherrer equation, while better estimation of size and strain can be made 

from WH method. Williamson and Hall proposed a method for deconvolution of size and 

strain broadening based on the peak width as the function of 2 θ. If a linear fit is obtained 

from the equation: 





 sin4

cos


D

K
hkl        (2) 

it is possible to derive the crystallite size (DXRD) from the intercept, and micro-strain (ε) from 

the slope. K is a constant equal to 0.94 for spherically shaped particles, λ is the wavelength of 

the x-ray (1.54178 Å for CuKα radiation) and θ is the peak center. Figure 3(a)-(f) represents 

the W-H plot of annealed WOx-TiO2 samples. The experimental data points are shown with 

symbols and fitted data points are shown with the straight line. As can be seen from Fig. 3, 

the microstrain gradually increases with increasing calcination temperature up to 700 °C and 

then decreases at higher temperatures. On the other hand, the particle size progressively 

increases with increasing calcination temperature (Tab. I). 

 

 
 

Fig. 3. Williamson-Hall plot for WOx-TiO2 samples obtained for different calcination 

temperatures. 
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Tab. I Phase composition and average crystallite size of anatase obtained by Williamson- 

Hall method. 

 

 

 

 

 

 

 

 

 

 

Dynamics of all these changes should be considered through mechanism of the process. It 

should be kept in mind that above 650 °C simultaneously three processes occur; sintering, 

anatase-to-rutile phase transformation, and decomposition of Keggin anion to WOx species.  

 Pore size distribution, BET surface area, and pore volume were obtained by N2 

adsorption analysis (Tab. II). BET surface area and pore volume of WOx-TiO2 samples 

decreases as the calcination temperature increases, which is in accordance with sintering 

process. It has been reported [31] that the main contribution to the surface area comes from 

small pores, while macropores have smaller contribution. Smaller pores have narrow, while 

larger pores have broader pore size distribution. Obviously, small micropores (3.7 nm) did not 

change while the larger ones continuously increased from 8.8 to 21 nm, upon thermal 

treatment (Tab. II). Besides, with raising the sintering temperature, the relative amount of 

smaller sized mesopores decreased gradually and disappears at 800 °C, while the relative 

amount of the larger ones constantly increases. 

 

Tab. II Textural properties of WOx-TiO2 powders after calcination at different temperatures. 

 

 
 

Fig. 4. Crystal size (DXRD), pore size (dp) and specific surface area (SBET) for WOx-TiO2 

powders sintered at different temperatures (from 500 to 800 °C). 

Sample 
Weight fraction 

 of Anatase (%) 

Weight fraction 

 of Rutile (%) 

W-H method 

D (nm) 

WOx-TiO2 (500) 100 - 6.87 

WOx-TiO2 (600) 100 - 9.83 

WOx-TiO2 (650) - - 13.05 

WOx-TiO2 (700) 88.49 11.51 16.05 

WOx-TiO2 (750) 85.31 14.69 20.27 

WOx-TiO2 (800) 82.04 17.96 24.32 

Sample SBET (m
2
g

-

1
) 

Vtot (cm
3
g

-1
) Vmic (cm

3
g

-1
) dmax1 (nm) dmax2 

(nm) 

WOx-TiO2 (500) 130.8 0.301 0.046 3.74 7.99 

WOx-TiO2 (600) 101.4 0.278 0.035 3.67 9.54 

WOx-TiO2 (650) 78.7 0.256 0.027 3.61 10.49 

WOx-TiO2 (700) 67.4 0.260 0.023 3.62 11.24 

WOx-TiO2 (750) 52.2 0.239 0.017 3.60 12.81 

WOx-TiO2 (800) 35.3 0.215 0.012 3.70 20.55 
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Comparison of microstructural properties (specific surface area - SBET and pore size- 

dBET) and crystallite size - DXRD as a function of thermal treatment is represented in Fig. 4. 

With increasing sintering temperature the average crystallite size of anatase increases, while 

specific surface area of WOx-TiO2 decreases. Also, WOx-TiO2 samples (calcined from 500 to 

700 °C) have similar total pore volume and average pore size at corresponding crystallite size. 

These observations indicate that samples undergo similar particle growth and aggregation 

during the thermal treatment. 

Considering that calcination temperature is an important parameter that affects the 

structure and photocatalytic activity of TiO2 [31], WOx-TiO2 samples prepared at different 

calcination temperatures were tested for photocatalytic degradation of MO under visible-light 

illumination. Also, in order to compare the degree of decomposition of MO over WOx-TiO2 

samples we presented results for pure TiO2 calcinated at 500 
o
C (Fig. 5a). TiO2 (500) sample 

showed higher photocatalytic activity towards MO degradation than TiO2 samples calcinated 

at high temperatures, 600, 650, 700, 750, and 800 
o
C. For this reason, TiO2 (500) sample was 

selected as a reference material. 

 

 
 

Fig. 5. Degradation rate of MO (%) over WOx-TiO2 powders and TiO2 (500) versus time 

interval (a) and first-order kinetic plot (b). 

 

Observed photodegradation rate of MO over pure TiO2 and WOx-TiO2 samples show that 

increasing calcination temperature from 500 to 700 °C leads to an increase of photocatalytic 

activity. Further increase of the calcination temperature to 800 °C leads to significant 

reduction of BET surface area and pore volume (Tab. II), resulting in noTab. drop of MO 

degradation rate. It is also observed that an increase of irradiation time rapidly decreases the 

concentration of MO, suggesting fast photodegradation of MO on the surface of WOx-TiO2 

powders. 

The kinetic data fit well to the Langmuir Hinshelwood model: 

kt
C

C








 0ln          (4) 

where k is apparent reaction constant rate (min
-1

), C0 and C are initial and reaction 

concentration of MO, respectively and t  is time of irradiation. Kinetic data are displayed in 

Fig. 5b and Tab. III.  
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Tab. III Rate constants of TiO2 (500) and WOx-TiO2 photocatalysts calcined at different 

temperature. 

a
kapp. - Apparent first order constant 

b
kapp. - Apparent first order constant per unit of specific surface area 

 

As the data show, the apparent first - order rate constants can be placed in the following order 

WOx-TiO2 (700)<WOx-TiO2 (650)<TiO2 (500)<WOx-TiO2 (600)<WOx-TiO2(500)<WOx-

TiO2 (800). The same order is obtained by dividing the apparent rate constant by specific 

surface area. These values point out the significance of exposure of active sites on their role in 

photocatalytic reaction. Although the specific surface area continuously drops with increasing 

calcination temperature, specific activity of the catalysts increases up to 700 C as the result 

of complex structural changes. Thus, the synthesized WOx-TiO2 (700) powder can be used as 

a viable UV/visible-light driven photocatalyst for the degradation of azo-dye. 

 

 

4. Conclusions 
 

 Nanocrystalline WOx-TiO2 powders were prepared by a sol-gel method combined 

with hydrothermal treatment. The XRD analysis revealed that WOx-TiO2 powders mostly 

consist of anatase phase with minor parts of rutile and tungsten oxides. The rise of calcination 

temperature caused an increase of crystallinity, crystallite and pore size, while specific surface 

area decreases continuously. All samples exhibited bimodal pore size distribution; smaller 

pores (3.7 nm) remain almost unchanged within the whole temperature range while larger 

mesopores were shifted towards large values, from 8.8 to 21 nm. Photocatalytic activity 

increases with calcination temperature up to 700 °C despite the lowering of the specific 

surface area, mainly due to increased pore size.  
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Садржај: У овом раду је за синтезу WOx-TiO2 прахова коришћена сол-гел метода у 

комбинацији са хидротермалним поступком. Утицај температуре синтеровања на 

структуру и текстурална својства је испитиван применом методе дифракције X-

зрака и анализом адсорпционо-десорпционих изотерми азота. Величина кристалита, 

параметри кристалне решетке и њено напрезање је одређивано помоћу Williamson-

Hall методе. Резултати су показали да са порастом температуре синтеровања 

долази до раста односа с/а параметара јединичне ћелије изазване истезањем у правцу 

с-осе. Адсорпционо-десорпциона анализа је показала да сви узорци поседују бимодалну 

расподелу пора у области мезопора. Са порастом температуре синтеровања 

установљено је да долази до померања преовлађујућег пречника пора ка већим 

вредностима. Запажен је пораст каталитичке активности код узорака жарених до 

700 °С, док даљи пораст температуре синтеровања изазива значајан пад активности. 

Кључне речи: WOx-TiO2 прах; синтеровање; мезопорозна структура; 

фотокаталитичка деградација; азо боја 
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