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Abstract 
Electrodeposited Pd and PdNi coating samples were tested for ethanol oxidation reaction 
(EOR) in alkaline solution using cyclic voltammetry (CV), chronoamperometric (CA) and 
quasi steady-state measurements. All alloy samples showed higher current densities for 
the EOR than pure Pd coating. The current density increased with increasing the amount 
of Pd in the PdNi coating and the most active one was found to be Pd0.74Ni0.26. Based 
on CA measurements a pseudo-steady state is achieved after 1500 s showing that 
Pd0.74Ni0.26 is more efficient and poisoning more tolerant than other investigated 
coatings. Upon the end of the current-time transient, the investigated catalysts were 
subjected to the potential cycling showing the ability to recover activity loss implying the 
surface composition stability of binary coatings. 
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Introduction 

Among the different types of fuel cells, direct alcohol fuel cells possess besides high energy 

densities, low pollutant emissions and low operating temperatures (60–100 °C) [1-3]. Alkaline direct 

ethanol fuel cells (ADAFCs) is recognized as promising power source because ethanol has higher 

energy density and lower toxicity compared to methanol [4]. Anode catalysts with high catalytic 

activities as well as good poison resistances are of great significance to the commercialization of 

ADAFCs. For alcohol oxidations, Pd-based nanocatalysts are superior to Pt-based catalysts in alkaline 

media and are widely used as anode catalysts in ADAFCs [1,5].  
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For the sake of commercialization, the activity and stability of pure Pd needs improvement which 

could be achieved by combining Pd with other metals or metal oxides. It has been reported that 

modifications of the Pd nanocatalyst by metals such as Ni [6-8], Au [9,10], Cu [10,11], Ag [10,12], Co 

[10, 13] effectively improve the catalytic performances of the Pd nanocatalyst toward alcohol 

oxidations in alkaline media.  

Nickel has been used to modify anode catalysts due to its high electrochemical stability in alkaline 

media and the low cost. Nickel-modified Pd electrodes have been reported as catalysts with 

excellent performances in ethanol oxidation reaction (EOR) such as the activity, the low 

overpotentials and the improved poison resistances. Examined parameters of EOR such as onset 

potential reaction and long-term stability show that among a series of graphene (G)-supported 

NixPd100−x binary alloyed catalysts, Ni50Pd50/G catalyst exhibits 60 mV lower onset potential compare 

to Ni0Pd100/G catalysts and current density approximately 8, 4, and 1.7 times superior than that of 

Ni75Pd25, Ni0Pd100/G, and Ni25Pd75/G catalysts, respectively [6]. The mass activity of the Pd83Ni17 

hollow nanospheres aerogel is 5.6-fold higher than that of the commercial Pd/C catalyst [14] while 

the mass activity of porous bimetallic PdNi catalyst is 3.5 times higher compared to the commercial 

Pd/C [15]. It is revealed that the onset potential is 80 mV lower and the peak current is about 

3 times higher for ethanol oxidation using multi-walled carbon nanotubes (MWCNT) catalysts with 

Pd1Ni1.5 compared to those of Pd/MWCNTs due to the small particle size and high crystallinity of 

binary catalyst [16] although it can be found that binary Pd3.7Ni1 nanocatalyst with ultra-low loading 

of metals immobilized on MWCNT exhibits anodic current density over 11 times higher than on the 

Pd/MWCNT [17]. The electro-catalytic activity of the carbon nanofibers (CNF) supported Pd–Ni 

nanoparticles prepared by chemical reduction with NaBH4 was examined for EOR show that the 

onset potential was 200 mV lower and the peak current density 4 times higher compared to that for 

Pd/C as a result of the uniform distribution of metal nanoparticles on the CNF support while the 

significant increase in reaction kinetics was achieve by raising the temperature to 60 °C [7]. 

Negatively shifted onset potential and doubled peak current density in potentiodynamic 

measurements for core-shell Ni-Pd/C compared to Pd/C was found [18], while high activity and 

excellent stability during continuously cycling were found for Pd supported on Ni foam [19,20]. 

It was proposed that the ligand and strain effects contribute the enhanced activity of Pd in the 

presence of Ni. Namely the insertion of smaller Ni atoms into the Pd crystal lattice causes a 

contraction of the Pd lattice. This causes a downshift of the Pd d-band center and consequently 

leads to weaker bonding with adsorbates such as poisoning intermediates in the EOR. Besides, Pd 

has a higher ionization energy than Ni and because of that Ni atoms become positively charged, 

facilitating the formation of oxides on Ni [21,22]. Generated OHad species of Ni participate in the 

oxidative desorption of intermediates in the EOR enhancing the activity of binary PdNi catalysts.  

The electrochemical methods for the preparation of metal alloy nanoparticles are extensively 

developed topic in materials science. In order to increase the activity and durability physical 

properties such as composition of the alloys, structure and the size of nanoparticles are carefully 

selected. Most of the synthesis methods use organic surfactants, capping agents or high tem-

peratures, consequently heating or cleaning treatment are necessary and therefore, the catalytic 

activity can be affected by undesirable adsorbed species. Nevertheless, among the various methods, 

electrodeposition is recognized as a simple and versatile method to prepare bimetallic surfaces. 

Several methods for PdNi alloy electrodeposition can be find in the literature such as: double-

potential step electrodeposition technique from the solution containing NiSO4, H2PdCl4 and Na2SO4 

[23]; cathodic deposition from the solution containing PdCl2, H2SO4, NH4Cl and NiCl2 using hydrogen 
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dynamic bubble template producing three-dimensional hierarchical pores of intercomnected 

dendrite walls [ 24 ]; electrodeposition in the presence of complexing agent, ethylenediamine 

[25,26]; electrodeposition from a ionic liquid as electrolyte [16,27]; physical vapour deposition 

which was used to obtain palladium-modified nickel foam material [19].  

The aim of this work is to investigate the electrochemical behavior of electrodeposited Pd and 

PdNi coatings for the EOR in 1 M NaOH at room temperature. An attempt is made to estimate the 

difference in catalytic activity of binary coatings in comparison with the Pd coating toward EOR, to 

test the stability of PdNi coatings and their ability to recover activity loss. In addition, kinetic and 

mass transport properties of the electrodeposited coatings are examined. 

Experimental  

All experiments were carried out with an VoltaLab PGZ 402 (Radiometer Analytical, Lyon, France) 

at room temperature in three compartment electrochemical glass cells with Pt wire as the counter 

electrode and saturated calomel electrode (SCE) as the reference electrode. A mirror-like polished 

gold rotating disk electrode (d = 5 mm) prepared as described elsewhere [28] served as working 

electrode. All the solutions used were prepared with high purity UV water (Millipore, 18.2 MΩ cm 

resistivity) and p.a. grade chemicals (Merck). The electrolytes were purged with purified nitrogen 

prior to each experiment.  

Electrodeposition of PdNi coating samples was achieved galvanostatically on the rotating Au disc 

electrode from the plating bath composed of 0.01 M PdCl2 + 0.6 M NiCl2 + 2 M NH4Cl while pure Pd 

was electrodeposited from the bath containing 0.05 M PdCl2 + 2 M NH4Cl. All the conditions are the 

same as it was described in [29].  

The electrochemically active surface area (ECSA) was estimated from the charge corresponding 

to the Pd-oxide reduction peak in 1 M NaOH by dividing obtained charge with the charge of 

420 µC cm-2 (corresponding to the monolayer of Pd-oxide), in accordance with the previous reports 

[6,8,22]. The presented results are corrected for the ECSA. 

Behavior of electrodeposited Pd and PdNi samples during the investigation of the EOR was 

recorded in the solution containing 1 M C2H5OH + 1 M NaOH by using CV and polarization measure-

ments at 1000 rpm. For current density–time responses of EOR the potential was stepped from -

800 mV to -400 mV.  

Results and discussion 

Electrochemical characterization of the electrodeposited samples  

The CVs of the investigated binary coatings and pure Pd coating in 1 M NaOH are displayed in 

Fig. 1. Anodic linear sweep voltammetry (ALSV) analysis and the energy dispersive X-ray 

spectroscopy (EDS) were used for the determination of the alloy coatings composition giving 

following compositions: Pd0.74Ni0.26, Pd0.50Ni0.50 and Pd0.28Ni0.72 [29]. The CVs presented in Fig. 1 

clearly indicate that the current densities for hydrogen adsorption-absorption/desorption and oxide 

formation and reduction are higher for PdNi samples than those recorded on the CV for pure Pd 

coating. Reduction of Pd-oxide on all catalysts creates a well-defined peak, but at different 

potentials. On PdNi coatings the peak maximum is shifted towards more negative potentials 

compared to pure Pd coating, which indicates a stronger adsorption of oxide species on the surface 

of bimetallic coatings due to the presence of Ni [8]. It was shown that the formation of a monolayer 

of the -Ni(OH)2 occurred in the potential region between -1000 mV and -700 mV, while at 

potentials more positive than 200 mV further oxidation of Ni(II) species into NiOOH occurs [30]. 
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Hence, the formation and the reduction of Ni(OH)2, as well as partial formation of the NiOOH 

increase the anodic current density at potentials more positive than 100 mV as is presented in Fig. 1. 

Also, these processes occurred simultaneously with the formation and reduction of Pd-oxide. 

 
Figure 1. CVs recorded with the scan rate 50 mV s−1, 1000 rpm on Pd and PdNi coatings in 1 M NaOH. 

The EOR  

The activity of the Pd0.74Ni0.26, Pd0.50Ni0.50, Pd0.28Ni0.72 and Pd coatings for the EOR in alkaline 

medium was investigated by the CV (Fig. 2). Considering electrochemical behavior of pure Pd during 

the EOR it was suggests that the carbonaceous intermediates can be strongly adsorbed on the Pd 

surface blocking the activity in the forward scan up to  -650 mV [31,32]. Since the Pd begins to 

adsorb OH species in the region of hydrogen adsorption [23], strongly adsorbed carbonaceous 

species can be oxidized, causing the increase of current density of the forward peak. Surface oxide 

formation block further adsorption of reactive species leading to decrease of current density of the 

forward peak. In the backward scan, the reduction of surface oxides enables ethanol adsorption at 

the free Pd surface, so that EOR current densities in the backward peak ascend. The peak in the 

backward scan could be assigned to the elimination of carbonaceous species that are not completely 

oxidized in the forward scan [23]. 

Among the CVs for the EOR at PdNi coating samples presented in Fig. 2, the current density 

increased with the increase of Pd content up to 74 at.%. Also, it seems that the small amount of Ni 

is sufficient to shift the reaction onset potential to more negative values since EOR on Pd0.74Ni0.26 

starts 50 mV earlier compared to the other binary coatings and 100 mV compared to the Pd 

coating. It was demonstrated based on the ratio of the forward and the backward peak current 

density that the alloy surfaces were less poisoned than pure Pd coating [29]. Among them the 

Pd0.74Ni0.26 coating is the most poisoning tolerant. The role of Ni in binary coatings can be 

rationalized in following way: since Ni itself is not active for the EOR at the potentials relevant for 
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the practical application [33] the presence of Ni in the PdNi alloy enhance the EOR by increasing the 

presence of OH species at the electrode surface [6,8,17] leading to the shift of onset potential to 

more negative values and the increase of the current density, as observed in Fig. 2. Also, the 

presented results reveal better utilization of Pd on the surface of Pd0.74Ni0.26 coating due to 

appropriate surface morphology since more active sites are accessible to the EOR. It can be pointed 

out that improved catalytic activity of investigated binary coatings can be achieved through the 

optimization of the Ni content and appropriate surface morphology. 

 
Figure 2. CVs recorded with the scan rate 50 mV s−1, 1000 rpm on Pd and PdNi coatings in 1 M 

NaOH + 1 M C2H5OH. 

Considering the literature, it can be stated that the best ratio of Pd and Ni for the EOR vary, 

depending on several factors as was explained in [29] whereby excess Ni decrease the activity for 

EOR due to the active surface blocking [6,35]. It can be found that carbon supported PdNi catalyst 

with atomic ratio of 40:60 synthesized by the simultaneous reduction method using NaBH4 as 

reductant exhibits 2 times higher activity and better stability than does the Pd/C catalyst [34]. Also 

the optimized carbon supported PdNi catalyst synthesized through a modified solution phase-based 

nanocapsule method, with atomic ratio of 44:56 represents the promising anode catalyst for 

alkaline DEFCs giving 180 mV more negative EOR onset potential and the 33 times higher exchange 

current density than Pd/C [35]. Graphene supported PdNi catalyst prepared by chemical reduction 

method, with atomic ratio of 50:50 showed the lower onset potential on CV and better long-term 

stability on amperometric measurements of EOR in a series of investigated binary alloyed 

NixPd100-x/G catalysts [6].  

Chronoamperometric technique is an effective method to evaluate the electrocatalytic activity 

and stability of catalyst materials. Figure 3 shows the typical current density–time responses of 

three PdNi coatings and pure Pd coating for the EOR at E = -400 mV. The oxidation current densities 

rapidly decrease in first 100 s, likely due to the formation of intermediates and poisoning species 
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during the EOR. With the time, a pseudo-steady state is achieved. After a polarization of 1500 s, the 

investigated electrodes reached their steady-state current densities which are shown in the inset of 

Fig. 3 with respect to Pd content (at %). It can be seen that the current density of the EOR on 

Pd0.74Ni0.26 electrode is higher than those on other electrodes, as found above in the CV 

measurements.  

 
Figure 3. Current density–time responses recorded on Pd and PdNi coatings in 1 M NaOH + 1 M 

C2H5OH at E = - 400 mV. 1000 rpm. Inset: current densities after 1500 s vs. at % Pd. 

Upon the end of the current-time transient, the investigated catalysts were subjected to the 

potential cycling. Figure 4 depicts the 1. and 10. cycles of Pd0.74Ni0.26 electrode as the representative 

ones. This PdNi coating shows reduced current densities at the beginning of cycling after CA with 

further increase of the activity during the cycling. The ability to recover activity loss demonstrates 

surface composition stability of investigated binary coatings. Hence, PdNi coatings showed 

enhanced electrocatalytic activity towards EOR which nominates this type of catalyst for possible 

practical application.  

For the purpose of comparing the kinetic and mass transport properties of the investigated 

electrodes during ethanol oxidation, Tafel polarization analysis and the relation between the peak 

current density and the scan rate were provided. The Tafel plots are showed in Fig. 5. The slope of 

140 mV dec-1 for Pd0.74Ni0.26 is obtained for the potentials up to –600 mV, while 160 mV dec-1 for 

Pd0.50Ni0.50, Pd0.28Ni0.72 and Pd are Tafel slops also obtained at the beginning of the peak in potential 

window up to  -550 mV. Lower Tafel slope indicate faster EOR charge-transfer kinetics. The results 

of the Tafel polarization study corroborate the findings of CV. Nearly the same values of Tafel plots 

were obtained on graphene supported NiPd binary catalysts [6], binary composite films of Pd and 

Ni on multiwalled carbon nanotubes (MWCNT) [36], carbon supported PdNi nanoparticles [35,37] 

and rather higher on PdNi nanoparticles supported on sulfonated MWCNT [38].  

Figure 6 shows the CVs obtained at Pd0.74Ni0.26 catalyst in 1 M NaOH +1.0 M C2H5OH solution at 

different scan rates. The relation between the peak current density obtained from forward CV scan 

and v0.5 of CV is shown in the inset. It can be seen that the oxidation potential and peak current 

density for ethanol oxidation become larger with the increasing of scan rate. 
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Figure 4. CVs (1. and 10. cycle) recorded on Pd0.74Ni0.26 after CA in 1 M NaOH + 1 M C2H5OH. 

Scan rate 50 mV s−1, RPM = 1000. 

 
Figure 5. Tafel responses recorded on Pd and PdNi coatings in 1 M NaOH + 1 M C2H5OH.  

Scan rate 1 mV s−1, RPM = 1000. 

The peak current densities in the forward scan are linearly proportional to the square root of 

scan rates (Fig. 6a). Close inspection of Fig. 6a depict nonzero intercept of the peak current at zero 

scan rate suggesting that it not is a pure diffusion controlled process. Nonzero intercept could 

suggest the involvement of some type of surface interactions in examine reaction. Additionally, the 

peak potential in the forward scan (Epa), increase with the increase of v, and a linear dependency 

can be obtained between Epa and ln v, as shown in Fig. 6b. The same dependency was obtained on 
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pure Pd coating and binary coatings with higher content of Ni indicating that the oxidation of ethanol 

is an irreversible electrode process [6]. 

 
Figure 6. CVs on Pd0.74Ni0.26 coating in 1 M KOH+ 1 M C2H5OH at various scan rates. Insets: plots current 

densities in the forward scan vs. v0.5 (a) and peak potentials in forward scan vs. ln of scan rates (b). 

Conclusions 

In summary, the coating samples obtained by simultaneous electrodeposition were tested for 

the EOR using CV, CA and quasi-steady state measurements and compare to pure Pd coating. The 

most active one was found to be Pd0.74Ni0.26 exhibiting also negatively shifted onset potential for the 

EOR. Kinetic and mass transport properties reveal lower Tafel slope obtained on Pd0.74Ni0.26 

indicating faster EOR charge-transfer kinetics while the EOR is not a pure diffusion controlled 

process. Furthermore, it was shown that EOR is an irreversible electrode process on all examined 

coatings. It was pointing out that Pd0.74Ni0.26 coating is more efficient and the more poisoning 

tolerant than the other investigated coatings. Also, the ability to recover activity loss confirms the 

surface composition stability of investigated binary coatings.  
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