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Stoichiometric Network Analysis as Mathematical Method for
Examinations of Instability Region and Oscillatory Dynamics

Ž. Čupić, G. Schmitz, Lj. Kolar-Anić

Abstract: Reaction systems in chemistry, physical chemistry, and biochemistry, which can be
described by true or pseudo-stoichiometric relationships between species, and, therefore, rep-
resented with stoichiometric models, are usually very complex. For the analysis of the models
of these complex nonlinear reaction systems with more than three variables, which can be in
different dynamic states like multistability, oscillatority or chaos, some general mathemati-
cal methods such as the Stoichiometric network analysis (SNA) must be used. Although the
SNA is a powerful method for systematic examination of complex reaction systems, identifi-
cation of underlying reaction pathways, and stability analysis of dynamic states, this method
is practically unknown among mathematicians. Therefore, a simple application of SNA to one
five-dimensional model is given here.
Keywords: Stoichiometric network analysis (SNA), mathematical modeling, stoichiometric
models, nonlinear oscillatory reaction system, instability condition

1 Introduction

In complex nonlinear reaction system it is generally possible to find one or several regions in
the parameter space where the main steady state is unstable. In these regions numerous self-
organized dynamic states can be observed, such as multistability, oscillatority and chaos
[12-14, 22, 27-29, 31, 32, 36, 38]. Although the mentioned dissipative structures are very
common in nature (for example, almost all biochemical processes are in oscillatory dynamic
states [12-15, 17, 22-24, 26-29, 31, 32, 36, 38]), the region of parameter space where they
appear is often very narrow. Mathematical modeling of these complex processes is therefore
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grade, Faculty of Physical Chemistry, Belgrade, Serbia.

43
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of essential importance, as it allows us to explore the parameter space systematically and
identify the instability regions. If the investigated process is simple and the model can be
reduced to two or three variables, the locus of unstable steady (nonequilibrium stationary)
states can be easily obtained. For the analysis of models with more variables, some general
methods must be used, such as the Stoichiometric Network Analysis (SNA) [3-7, 21]. The
SNA is a powerful method for systematic examination of the models of complex reaction
systems, identification of underlying reaction pathways, and stability analysis of dynamic
states [3-12, 16-21, 23-26, 32-35]. However, this method is presented in literature in such a
manner that it is not appropriately adapted to mathematicians, and, on the other side, also to
chemists, physical chemist or biochemists, resulting in antagonism of scientist against this
procedure [3-7]. With aim to exceed mentioned problem, we shall present here the SNA
procedure applied to one five-dimensional model of a complex nonlinear reaction system
that is derived from the model of the Bray-Liebhafsky oscillatory reaction [1, 2].

2 Model

Generally, in reaction systems, one or more initially present species, the reactants, give rise
to one or more species that are not further transformed, the products, through a number
of intermediate species that are produced and consumed during the course of the reaction.
Hence, there are two fundamentally different types of species. The reactants and products
are called external species. The intermediates that are produced and consumed during time-
evolution of the process and do not appear in the net reaction are called internal species.
The SNA studies the time evolution of the internal species for given concentrations of the
external ones. In the proposed model Reactant R gives the product P via five intermediate
species: X1,...,X5.

Reactions no.

X3 → X4 +X5 (R1)

X4 +X5 → X3 (R2)

X3 +X5 → X2 (R3)

X2 → 2X4 (R4)

2X4 → X2 (R5)

X3 +X4 → X1 (R6)

X1 → X3 +X4 (R7)

R+X4 → X3 +P (R8)

R+X2 → X4 +X5 (R9)
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Any reversible reaction can be written as two opposite forward reactions, in our case
(R1) - (R2), (R4) - (R5) and (R6) - (R7). The correspondence with the chemical model [33]
is given by X1 = I2, X2 = I2O, X3 = I−, X4 = HOI and X5 = HIO2.

Denoting the concentrations of the intermediates Xi (i = 1, ...,5) by xi, the time evolu-
tion of the system can be described by the following set of differential equations based on
the proposed model and mass-action kinetics (see Appendix 1) [30, 37]:

dx1

dt
= k6x3x4 −k7x1 (1)

dx2

dt
= k3x3x5 −k4x2 +k5x2

4 −k9x2x6 (2)

dx3

dt
= −k1x3 +k2x4x5 −k3x3x5 −k6x3x4 +k7x1 +k8x4x6 (3)

dx4

dt
= k1x3 −k2x4x5 +2k4x2 −2k5x2

4 −k6x3x4 +k7x1 −k8x4x6 +k9x2x6 (4)

dx5

dt
= k1x3 −k2x4x5 −k3x3x5 +k9x2x6 (5)

Here k j ( j = 1, ...,9) denote the rate constants. From a mathematical point of view,
in these equations, k j are the parameters, whereas the concentrations xi (i = 1, ...,5) of
intermediate species, are variables determining dynamic state of the considered reaction
system. Therefore, the number of intermediate species defines the number of differential
equations necessary to describe time evolution of the examined system in the concentration
phase space, and, thus, determines the dimension of the analyzed problem.

The above differential equations can be written as a function of reaction rates v j( j =
1, ...,9) given by the expressions: v1 = k1x3, v2 = k2x4x5, v3 = k3x3x5, v4 = k4x2, v5 = k5x2

4,
v6 = k6x3x4, v7 = k7x1, v8 = k8x4x6 and v9 = k9x2x6:

dx1

dt
= v6 − v7 (6)

dx2

dt
= v3 − v4 + v5 − v9 (7)

dx3

dt
= −v1 + v2 − v3 − v6 + v7 + v8 (8)

dx4

dt
= v1 − v2 +2v4 −2v5 − v6 + v7 − v8 + v9 (9)

dx5

dt
= v1 − v2 − v3 + v9 (10)

Thus, we are dealing with a model given by nine stoichiometric relations between five
species. The time evolution of their concentrations is described by corresponding system of
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nonlinear first order differential equations (1.1-1.5). This system of differential equations
is defined by law of mass action and, therefore, it is not arbitrary. Consequently, any mod-
ifications in modelling must be performed starting from the stoichiometric model. In the
mathematical literature, the system of differential equations is often taken as the model and
the main postulates as well as modifications in the modelling ought to be carried out on it.

The modeling of reaction systems by stoichiometric model has important advantage,
since the basic model of reaction mechanism is universal for considered process. There-
fore, when modification is necessary it can be easily updated, whereas the sophistically
composed system of differential equations, in the other case, must be postulated from the
beginning for every new demand. The SNA is the simple method for examination of such
stoichiometric models of complex nonlinear processes, identification of underlying reaction
pathways, and stability analysis of dynamic states.

3 Stoichiometric Network Analysis (SNA)

Modeling complex nonlinear processes requires a deep understanding of dynamical system
theory, beside the standard kinetic examinations. In the case of complex nonlinear reaction
systems, such as oscillatory reactions, the stability of the steady states needs to be examined
in different regions of the parameter space.

As the concentrations of intermediate species are the dynamical variables, their number
defines the number of differential equations needed to describe the dynamics of the ex-
amined system in the concentration phase space, and, thus, determines the dimensionality
of this phase space. Consequently, a stability analysis will yield a characteristic equation
whose order is equal to the number n of these intermediates. If a reaction system consists
of two or three intermediate species (n = 2 or 3) the stability analysis can be performed
simply by using the standard mathematical procedure [14] starting from the linearized ki-
netic equations in the vicinity of the steady states. The SNA also starts from the linearized
kinetic equations in the vicinity of a steady state. However, it avoids direct solving of the n-
dimensional characteristic equation of the Jacobian matrix which is practically unsolvable
for n > 3.

The fundamental idea of SNA is to perform the stability analysis in the rates space
instead of the concentrations space. It uses new parameters derived from the analysis of
reaction routes or pathways of the considered process in the steady state. Any linear com-
bination of the elementary steps that results in some net stoichiometric reaction without
intermediate species therein is one reaction route or pathway. In terminology of SNA, the
steady state (or nonequilibrium stationary state) reaction pathways are currents. Clarke [3-
5] has shown that all the currents form a convex cone in the rate space, a 9 dimensional
space in our example. The edges of this cone are called extreme currents. The first aim of
SNA is to determine all extreme currents. For this, we first transform kinetic equations to a
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matrix form and define the reaction pathways.

3.1 Matrix Form of Kinetic Equations

The differential equations (6)-(10) may be written in the matrix form (11).

dx1
dt = 0v1 +0v2 +0v3 +0v4 +0v5 +1v6 −1v7 +0v8 +0v9

dx2
dt = 0v1 +0v2 +1v3 −1v4 +1v5 +0v6 −0v7 +0v8 −1v9

dx3
dt =−1v1 +1v2 −1v3 +0v4 +0v5 −1v6 +1v7 +1v8 +0v9

dx4
dt = 1v1 −1v2 +0v3 +2v4 −2v5 −1v6 +1v7 −1v8 +1v9

dx5
dt = 1v1 −1v2 −1v3 +0v4 +0v5 +0v6 +0v7 +0v8 +1v9

(11)

The coefficients in these five equations form a matrix S, called stoichiometric matrix.

R1 R2 R3 R4 R5 R6 R7 R8 R9

S =



0 0 0 0 0 1 −1 0 0

0 0 1 −1 1 0 0 0 −1

−1 1 −1 0 0 −1 1 1 0

1 −1 0 2 −2 −1 1 −1 1

1 −1 −1 0 0 0 0 0 1



X1

X2

X3

X4

X5

(12)

Thus, the kinetic equations necessary for analysis of dynamic states of the Model (R1)-
(R9) have the following matrix form:

dx1
dt

dx2
dt
...

dx5
dt

= S ·


v1

v2
...

v9

 (13)

The corresponding stationary equation is (14) where vss is the one-column matrix of the
reaction rates at the steady state.

S ·νss = 0 (14)

In the general case, the concentrations of the intermediates in the steady states are func-
tions of reactant concentrations, like R in our example. The SNA perform a stability analy-
sis for given values of the reactant concentrations. In a steady state, the process as a whole
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can be presented as a linear combination of several elementary reaction pathways or reac-
tion routes with non-negative coefficients [3,5]. These elementary reaction pathways are
the extreme currents Ei. They are obtained by identification of the right null vectors of the
stoichiometric matrix. In proposed model it would give:

0 0 0 0 0 1 −1 0 0

0 0 1 −1 1 0 0 0 −1

−1 1 −1 0 0 −1 1 1 0

1 −1 0 2 −2 −1 1 −1 1

1 −1 −1 0 0 0 0 0 1


·


ei,1

ei,2
...

ei,9

=


0

0
...

0

 (15)

Since all elements of the vector on the right-hand side of equation (15) are equal to
zero, the last expression is a homogeneous system of equations without unique solution. To
avoid this problem, we use appropriate scaling relation of the reaction rates as additional
equation: the sum of the ei will be equal to one. Hence, a row with all elements equal to
one is added in matrix S (Eq. (4)) before calculation of extreme currents, so Eq. (15) is
transformed to Eq. (16) or Eq. (17) in matrix form.



0 0 0 0 0 1 −1 0 0

0 0 1 −1 1 0 0 0 −1

−1 1 −1 0 0 −1 1 1 0

1 −1 0 2 −2 −1 1 −1 1

1 −1 −1 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1


·


ei,1

ei,2
...

ei,9


ss

=



0

0

0

0

0

1


(16)

B · ess = b (17)

Rank of the corresponding stoichiometric matrix S is n = 5. The rank of matrix B
is equal to n + 1. Therefore, there are n + 1 independent columns in this matrix. Any
combination of n+ 1 columns could give one independent reaction pathway in the steady
state. However, some combinations lead to the same solution, others do not have solution
at all and some combinations have solutions that could be decomposed to combinations of
other ones. Nevertheless, all combinations of n+1 columns will give all extreme currents.
Selection of n+1 from total number of m columns of the matrix S is equivalent to demand
that other m− (n+1) ei are zero for the considered reaction pathway. Finally, the ei can be
multiplied by common factor with aim to obtain small integer numbers.
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Hence, all combinations of n+ 1 = 6 columns of B matrix will give all extreme cur-
rents. For example, first six columns have no solution whereas combination of the columns
corresponding to v1, v3, v4, v6, v8 and v9 gives following system of equations:



0 0 0 0 0 1 −1 0 0

0 0 1 −1 1 0 0 0 −1

−1 1 −1 0 0 −1 1 1 0

1 −1 0 2 −2 −1 1 −1 1

1 −1 −1 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1


·



ei,1

0

ei,3

ei,4

0

ei,6

0

ei,8

ei,9


ss

=



0

0

0

0

0

1


(18)

with solution:

e3,ss = e8,ss = e9,ss =
1
3

and e1,ss = e6,ss = 0

equivalent to

e3,ss = e8,ss = e9,ss = 1 and e1,ss = e6,ss = 0 (19)

So, we have just obtained one reaction pathway in the steady state, that is, one extreme
current of the stoichiometric network represented by the Model (R1)-(R9). Other combi-
nations of columns of the matrix B give three additional independent extreme currents. All
mutually different irreducible solutions obtained for extreme currents are columns of the
new matrix E, where the order of columns is arbitrary:
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E =

E1 E2 E3 E4



1 0 0 0 R1

1 0 0 0 R2

0 0 0 1 R3

0 1 0 0 R4

0 1 0 0 R5

0 0 1 0 R6

0 0 1 0 R7

0 0 0 1 R8

0 0 0 1 R9

(20)

Any column of the current matrix E represents one combination of reaction steps (the
reactions of the model) that ensure net reaction without intermediates in it. In other words,
in one reaction pathway any appearance of intermediates will be exactly compensated by
their disappearance. In the considered example, the reactant and product are included only
in the reactions (R8) and (R9) and, therefore, only in the fourth extreme current and also in
the corresponding net reaction. Summing the reactions multiplied by the elements of E4 we
get:

X3 +X5 → X2

R+X4 → X3 +P

R+X2 → X4 +X5

Σ: 2R −→ P

First three extreme currents are due to three reversible reactions, (R1) and (R2), (R4)
and (R5), as well as (R6) and (R7), and therefore have no stoichiometric net result. For
example E1 gives

X3 → X4 +X5

X4 +X5 → X3

Σ: 0 −→ 0

Thus, using SNA, we are able to analyze all reaction routes which is impossible to do
without this method if the model is complex.
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3.2 Current Rates

We have just seen that any simple reaction in a stationary state can give some contribution
to the reaction pathways (extreme currents) where it takes place. Therefore, any reaction
rate in the stationary state vss can be decomposed in current rates. The contributions of
the extreme currents to the reactions rates, named current rates and denoted by ji, are the
components of the corresponding vectorj. Thus, the basic equation of the stoichiometric
network analysis is:

vss = E · j (21)

Having the matrix E, we can write the reaction rates at the steady state as linear combi-
nations of the extreme current rates. These equations imply relations between the reaction
rates at the steady state as well as the relations between the steady state concentrations. In
the case of the Model (R1)-(R9) we obtain:

v1

v2

v3

v4

v5

v6

v7

v8

v9


ss

=



1 0 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



·


j1
j2
j3
j4

 (22)

that is:

v1,ss = v2,ss = j1
v3,ss = itv8,ss = v9,ss = j4
v4,ss = v5,ss = j2
v6,ss = v7,ss = j3

(23)

Let us underline that, in the general case, reaction rates are linear combinations of
current rates. Taking into account rates of reactions (R1)-(R9) based on mass action law,
given under Eqs. (6)-(10) and (23), steady state reaction rates can be expressed by means of
both classic kinetic (rate constants and steady state concentrations) or SNA (current rates)
parameters:
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v1,ss = v2,ss = k1x3,ss = k2x4,ssx5,ss = j1
v3,ss = v8,ss = v9,ss = k3x3,ssx5,ss = k8x4,ssx6,0 = k9x2,ssx6,0 = j4
v4,ss = v5,ss = k4x2,ss = k5x2

4,ss = j2
v6,ss = v7,ss = k6x3,ssx4,ss = k7x1,ss = j3

(24)

Here there are five steady state concentrations of intermediary species Xi (i = 1, ...,5)
and the concentration of reactant X6. Since the concentration of reactant X6 is much higher
than the concentration of other species, and therefore x6 changes much more slowly than
the concentration of the intermediate species, it is taken as constant in SNA with value x6,0
in further calculations. The relations (24) are particularly useful for evaluation of the steady
state concentrations. Thus, from five relations between five stationary state concentrations
given in equations (24), we can easily obtain their values. They are

x1,ss =
k6

k7

k2

k1

(
k8k4

k9k5

)2√k8k1

k3k2
x6,0

x2,ss =
k5

k4

(
k8k4

k9k5

)2

x3,ss =
k2

k1

k8k4

k9k5

√
k8k1

k3k2
x6,0

x4,ss =
k8k4

k9k5

x5,ss =

√
k8k1

k3k2
x6,0

(25)

The advantage of this procedure where we calculate steady state concentrations using
the relations between reaction rates and current rates can be seen better on larger models,
where traditional calculations are practically impossible.

3.3 The Stability Analysis

The next step in SNA is to investigate the stability of the network’s motion around a steady
state after an infinitely small perturbation, that is, to find the instability condition and the
region of parameters where the steady state of the model is unstable. The dynamics of small
concentration perturbations ∆x = x−xss near a steady state xss is given by the equation

d∆x
d t

= M ∆x. (26)



Stoichiometric Network Analysis as Mathematical Method for ... 53

obtained by linearization of the general equation of motion about this steady state. Its
stability depends on the sign of the real part of the eigenvalues of the Jacobian matrix M
given in the form

M = S (diag vss ) KT (diag x−1
ss ). (27)

Here, K is the matrix of the orders of reaction and KT is its transpose. In the SNA [3]
the matrix M is written as

M = S (diag Ej ) KT (diag h), (28)

where diag h is a diagonal matrix whose elements are the reciprocals of steady state concen-
trations (hi = 1/xi,ss) and diag Ej is a diagonal matrix whose elements are the reaction rates
at the steady state. The matrix M written as function of the SNA parameters has particular
advantages for the stability analysis since the parameters ji and hi are non-negative, what is
an essential feature of the SNA. The steady state stability is determined by the eigenvalues
of M, which are the roots λ of the characteristic polynomial

Det [λ I−M] = λ 5 +λ 4α 1 +λ 3α2 +λ 2α3 +λ α4 +α 5 = 0. (29)

whereα i (i = 1,2,. . . ,5) is the coefficient of the corresponding eigenvalue λ 5−i, and I is
the unit matrix. By convention, α0 = 1. Since diag h introduces only scaling factors, it is
useful to define a current rate matrix V(j), given by the expression:

V(j) =−S diag (Ej)KT. (30)

so that M = −V(j) (diag h). As any α i is the sum of minors of V(j) with dimension i
multiplied by the product of the corresponding hi values, we look for a negative diagonal
minors of V(j). If we find negative minors in one α i we ask if the sum of negative terms can
be larger than the sum of positive terms in same α i. In the model considered here, several
minors can be negative so that the steady state can be unstable.

If the underlying kinetics occurs according to the law of mass action, KT in the last
equation represents the transpose of the matrix of reaction orders, whose elements are gen-
eral stoichiometric coefficients of species Xi standing on the left side of the reaction j, sL

i,j
(see Eq. (A1.1), Appendix 1). In the considered case, the matrix K is
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K=



0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1

1 0 1 0 0 1 0 0 0

0 1 0 0 2 1 0 1 0

0 1 1 0 0 0 0 0 0


(31)

By substituting matrixes K, S, and E in equation (30), the matrix of currents rates V(j)
can be derived:

V( j) =



j3 0 −j3 −j3 0

0 j2 + j4 −j4 −2j2 −j4
−j3 0 j1 + j3 + j4 −j1 + j3 − j4 −j1 + j4
−j3 −2j2 − j4 −j1 + j3 j1 +4j2 + j3 + j4 j1

0 −j4 −j1 + j4 j1 j1 + j4


(32)

Steady state is unstable if and only if one root of the characteristic equation Eq. (29)
has a positive real part and the general instability condition is given by the Routh-Hurwitz
criteria. However, even with the simplifications of the SNA equations, these criteria are un-
usable for large models. In practice, it is found that we can use a much simpler criterion: we
look for conditions where a coefficient ai can be negative (a approximation) [6, 21]. More-
over, the parameters ji and hi are non-negative so that any negative term is preceded by a
minus sign that can be easily located in complicated equations using symbolic calculations.

Coefficients αi of the characteristic equation Eq. (29) represent the sum of all diagonal
minors M of dimensions i× i, (i = 1, . . . ,5) of the matrix V(j) multiplied by corresponding
sets of reciprocal concentrations hi [12, 18, 20]. Thus, coefficients α1, α2 and α5 are:

α1 = j3h1 +( j2 + j4)h2 +( j1 + j3 + j4)h3 +( j1 +4 j2 + j3 + j4)h4 +( j1 + j4)h5 = Tr(M) (33)
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α2 = j3 ( j2 + j4)h1h2 +
[

j3 ( j1 + j3 + j4)− j2
3
]

h1h3 +
[

j3 ( j1 +4 j2 + j3 + j4)− j2
3
]

h1h4+

+ j3 ( j1 + j4)h1h5 +( j2 + j4)( j1 + j3 + j4)h2h3+

+[( j2 + j4)( j1 +4 j2 + j3 + j4)−2 j2 (2 j2 + j4)]h2h4+

+
[
( j2 + j4)( j1 + j4)− j2

4
]

h2h5+

+[( j1 + j3 + j4)( j1 +4 j2 + j3 + j4)− (− j1 + j3 − j4)(− j1 + j3)]h3h4+

+
[
( j1 + j3 + j4)( j1 + j4)− (− j1 + j4)

2
]

h3h5+

+
[
( j1 +4 j2 + j3 + j4)( j1 + j4)− j2

1
]

h4h5 =

= j3 ( j2 + j4)h1h2 + j3 ( j1 + j4)h1h3 + j3 ( j1 +4 j2 + j4)h1h4+

+ j3 ( j1 + j4)h1h5 +( j2 + j4)( j1 + j3 + j4)h2h3+

+[ j2 ( j1 + j3 +3 j4)+ j4 ( j1 + j3 + j4)]h2h4+

+[( j2 + j4) j1 + j2 j4]h2h5 +[4( j1 j2 + j1 j3 + j2 j3)+ j4 ( j1 +4 j2 +3 j3 + j4)]h3h4+

+[4 j1 j4 + j3 ( j1 + j4)]h3h5 +[ j1 (4 j2 + j3 + j4)+ j4 ( j1 +4 j2 + j3 + j4)]h4h5

(34)

α 5 = 2j1j2j3j2
4
h1h2h3h4h5 (35)

Obviously, the coefficients α 1, α 2 and α 5 are always positive and therefore the source
of instability is not in them. However, α 3 and α 4 may be negative. Instead to calculate
all αi, we shall look for negative minors in matrix V(j). There are three possibly negative
minors:

M245 = 2 j1 j 2
4 − j2 j 2

4 + j1 j2 j3 +8 j1 j2 j4 + j1 j3 j4 + j2 j3 j4. (36)

M1245 = 2 j1 j3 j 2
4 − j2 j3 j 2

4 +8 j1 j2 j3 j4. (37)

M2345 = 2 j1 j 2 j 2
4 −2 j2 j3 j 2

4 +8 j1 j3 j 2
4 +23 j1 j2 j3 j4. (38)

Thus, only α 3 and α 4 can be negative. When negative term is dominant, corresponding
αi is negative, and there exists positive real part of some root of the characteristic equation.
Under these conditions, the examined steady state is unstable. Since minors M1245 and
M2345, both include minor M245, the source of instability is in the last one. The instability
condition which results from minor M245 is:

j2 j 2
4 > 2 j1 j 2

4 + j1 j2 j3 +8 j1 j2 j4 + j1 j3 j4 + j2 j3 j4. (39)

Besides, term M245h2h4h5 must be dominant if we want to have negative α 3. Since, hi

being reciprocal concentrations, this term is dominant if the concentrations of the interme-
diate species X2, X4 and X5 are sufficiently low. This is true for the considered chemical
system so that the instability is approximately defined by the simplified instability condition
(39). The minor M245 is the core of the instability of the model.
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By means of relations (23), the instability condition (39) can be rewritten in function
of the steady state reaction rates. There are several combinations of the reaction rates that
satisfy mentioned equations. We can select any of them, but we always prefer the one for
which we have the best experimental evidence. One possible expression for the instability
condition is:

v5v 2
3 > 2v1v 2

3 + v1v5v7 +8v1v5v3 + v1v7v3 + v5v7v3. (40)

The subscript ”ss” is dropped in the last expression for simplicity. The equation (40)
can be also written in dimensionless form. Such kind of discussion is important for practical
purposes and, although it is not necessary for further calculations here, the dimensionless
kinetic equations are given in Appendix 2.

Thus, since any polynomial of related minor can be expressed as function of steady
state reaction rates, by SNA we can evaluate the instability condition as function of them
and correlate it with experimentally obtained values for corresponding rate constants and
steady state concentrations. Moreover, as the steady state concentrations are also functions
of rate constants, we can express the instability condition as function of rate constants and
initial concentrations of reactants, only. Calculated instability is located in a defined domain
of the phase space where we can analyze dynamic states by numerical simulations. Without
mentioned calculations we had a serious problem to find the instability region, since the
parameters, rate constants, differs from one another for several (frequently more than ten)
order of magnitudes.

Moreover, the SNA allows the distinction between different kinds of instability. Tak-
ing into account the above calculated αi we can construct all Hurwitz determinants ?i, i =
1,. . . ,n, which are defined as the determinants of the leading principal minor, made from
the first i rows and columns of the Hurwitz matrix H, where ai = 0 for i > n (in the analyzed
model n = 5).

H =



α1 α3 α5 α7 . . . α2n−1

1 α2 α4 α6 . . . α2n−2

0 α1 α3 α5 . . . α2n−3

0 1 α2 α4 . . . α2n−4

0 0 α1 α3 . . . α2n−5
...

...
...

...
. . .

...

0 0 0 0 . . . αn


. (41)

A saddle-node bifurcation occurs when the condition αn = 0 is satisfied [24]. For the
considered model,
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α n = α 5 = 2j1j2j3j2
4
h1h2h3h4h5 > 0 (42)

Thus, a saddle-node bifurcation doesn’t occur. An Andronov-Hopf bifurcation occurs
when ∆n−1 = 0 [7, 24]. For the considered model,

∆4 = det


α1 α3 α5 0

1 α2 α4 0

0 α1 α3 α5

0 1 α2 α4

= 0 (43)

or

∆4 = (α1α2α3α4 +2α1α4α5 +α2α3α5)−
(
α1α2

2 α5 +α2
1 α2

4 +α2
3 α4 +α2

5
)
= 0 (44)

Both, α 3 and α 4 can be negative, probably simultaneously, while the other coefficients
are always positive. Grouping the positive terms on the left and the potentially negative ones
on the right side of equation, the condition for the Andronov-Hopf bifurcation becomes:

α1α2α3α4 −α2
3 α4 =

(
α1α2

2 α5 +α2
1 α2

4 +α2
5
)
− (2α1α4α5 +α2α3α5) (45)

Minor M245 remains the most probable source of the instability, and hence, the instabil-
ity condition (39) or (40) can be used for the approximate identification of the Andronov-
Hopf bifurcation.

4 Conclusion

The stoichiometric network analysis is applied to a five-dimensional model of a complex
nonlinear reaction system with aim to attract readers to use this method in any other math-
ematical modeling of reaction systems that can be presented by stoichiometric relations
between species. In particular, the analytical procedure for calculations of reaction path-
ways, instability condition and dimensionless equations, all in a model with five variables,
was explicitly shown. Practical SNA-based approach is also given, to differentiate between
saddle node and Andronov-Hopf bifurcations leading to instability and oscillations.

Appendix 1: Differential equations based on the mass-action kinetics, matrix
form of kinetic equations and stationary states

Any reaction system consisted of m reactions and ntot species denoted by Xi (i = 1, ...,ntot),
where ntot is the total number of species including both internal (n) and external (nex) ones,
can be presented in the following form:
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sL
1,1X1 + sL

2,1X2 + · · ·+ sL
ntot ,1Xntot → sD

1,1X1 + sD
2,1X2 + · · ·+ sD

ntot ,1Xntot

sL
1,2X1 + sL

2,2X2 + · · ·+ sL
ntot ,2Xntot → sD

1,2X1 + sD
2,2X2 + · · ·+ sD

ntot ,2Xntot

...

sL
1,mX1 + sL

2,mX2 + · · ·+ sL
ntot ,mXntot → sD

1,mX1 + sD
2,mX2 + · · ·+ sD

ntot ,mXntot

(A1.1)

Here, sL
i,j and sD

i,j are the stoichiometric coefficients of considered species at left (L) and
right (D) side of equation. Index j denotes the ordinal number of a reaction in a series
of m reactions. The stoichiometric coefficients are usually small integer numbers (si, j =
0,1,2, ...). If stoichiometric coefficient is zero at one or both sides of equation, this species
does not appear in stoichiometric expression at this or both sides, respectively. Besides, one
species can appear on both sides of chemical reaction, as it is the case in direct autocatalytic
or autoinhibitory reactions. All reactions can be either simple forward or reversible ones.
Any reversible reaction can be written as two forward ones. In SNA, the reverse reactions
must be taken as two forward ones. Therefore we shall consider the system of forward
reactions only.

Denoting by xi the concentration of species Xi, and by Si,j = sD
i,j − sL

i,j the difference
between its stoichiometric coefficients from the right and left side of reaction j, we can
write the kinetic equations that correspond to the model (A1.1) in the following form:

d x1
d t = S1,1v1 +S1,2v2 + · · ·+S1,mvm

d x2
d t = S2,1v1 +S2,2v2 + · · ·+S2,mvm

...
d xntot

d t = Sntot,1v1 +Sntot,2v2 + · · ·+Sntot,mvm

(A1.2)

Here the reaction rates v j are functions of rate constants k j and concentrations of the species
that take place in reaction step j. They are usually expressed as the product of the corre-
sponding rate constant and relevant species concentrations with respective exponents equal
to stoichiometric coefficient:

v j = k jx
sL

1, j
1 x

sL
2, j

2 · · ·xsL
ntot , j

ntot (A1.3)

Let us consider reaction rates of three reactions:

Reactions no.

X2 → 2X4 v4 = k4x2 (R4)

2X4 → X2 v5 = k5x2
4 (R5)

X2 +2X4 → 3X4 v10 = k10x2x2
4 (R10)

If we imagine above three reactions as the model of a process, the time evolution of the
particular species X2 and X4 is described by the following differential equations:
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dx2
dt =−k4x2 + k5x2

4 − k10x2x2
4

dx4
dt = 2k4x2 −2k5x2

4 + k10x2x2
4

(A1.4)

The sign + in the second equation before the rate of reaction (R10) is a consequence of
the fact that in this reaction there are three molecules of species X4 on the right side and
two of them on the left side. That is, the concentration of this species in considered reaction
will increase.

In the general case, the kinetic Eq. (A1.2) can be simply written in the matrix form, by
the operator named the stoichiometric matrix Stot:

R1 R2 · · · Rm

Stot =


S1,1 S1,2 · · · S1,m

S2,1 S2,2 · · · S2,m
...

...
. . .

...

Sntot,1 Sntot,2 · · · Sntot,m


X1

X2
...

Xntot

(A1.5)

In the literature, the elements Si,j = sD
i,j − sL

i,j. are usually called stoichiometric coeffi-
cients, although there is obvious difference between Si,j and stoichiometric coefficients sD

i,j

and sL
i,j.

In Eq. (A1.5), the row over the matrix Stot denotes reactions, whereas the column on
the right side denotes reaction species. This extra row and column are not part of the matrix
Stot, but help a reader to correlate their elements with corresponding reactions and species,
selected in arbitrary order.

Since, in stoichiometric network analysis, the reverse reactions must be taken as two
forward ones, every reverse reaction has two columns in stoichiometric matrix Stot. The
system of kinetic equations in the matrix form is:

dx1
dt

dx2
d t
...

d xntot
d t

=


S1,1 S1,2 · · · S1,m

S2,1 S2,2 · · · S2,m
...

...
. . .

...

Sntot,1 Sntot,2 · · · Sntot,m

 ·


v1

v2
...

vm

 (A1.6)

The same equation can also be written in the form:
dx
dt = Stot · v (A1.7)

where dx/d t is vector, that is, one-column reaction rate matrix.
In the equilibrium stationary state, or, simply, in the equilibrium, for any reaction

species Xi, including reactants and products, the following equation must be satisfied:(
d xi
d t

)
ss
= Si,1 v1,ss + Si,2 v2,ss + · · · + Si,m vm,ss = 0 (A1.8)
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Consequently, the equilibrium stationary state can be calculated from the following
matrix relation:

Stot · vss = 0 (A1.9)
In the nonequilibrium stationary state, same equation must be satisfied, but only for

independent intermediates Xi. If (d xi/d t)ss for all of them are equal to zero, we shall
obtain the main steady state. However, we can discuss also the steady states with respect to
subsystems of independent intermediate species.

Thus, for the system of n independent intermediate species, the nonequilibrium station-
ary state is defined by the following matrix equation:

dx1
dt

dx2
dt
...

dxn
dt


ss

=


S1,1 S1,2 · · · S1,m

S2,1 S2,2 · · · S2,m
...

...
. . .

...

Sn,1 Sn,2 · · · Sn,m

 ·


v1

v2
...

vm


ss

=


0

0
...

0

 (A1.10)

or in the following matrix form:
S · vss = 0 (A1.11)

Thus, equation (A1.9) is related to equilibrium, while equation (A1.11) is related to
the non-equilibrium stationary states, that is, the steady states. As we have already said,
the equilibrium stationary states can be only stable and therefore uninteresting for further
examinations of dynamic states of a system.

Appendix 2: Dimensionless kinetic equations

The dimensionless kinetic equations can be very useful. Among others, they can be used
to reduce the number of parameters. The procedure for obtaining the dimensionless kinetic
equations will be again demonstrated using the Model (R1)-(R9) as an example. There, we
first need to define new dimensionless variables denoted for internal by βi where βi = xi/xi,ss
(i = 1, ...,5), for reactant by β6 = x6/x6,0 and for product by β7 = x7/x6,0. Introducing them
into the kinetic equations (6)-(10) we obtain:

x1,ss
dβ 1
dt = v6 − v7

x2,ss
dβ 2
dt = v3 − v4 + v5 − v9

x3,ss
dβ 3
dt =−v1 + v2 − v3 − v6 + v7 + v8

x4,ss
dβ 4
dt = v1 − v2 +2v4 −2v5 − v6 + v7 − v8 + v9

x5,ss
dβ 5
dt = v1 − v2 − v3 + v9

x6,0
dβ 6
dt =−v8 − v9

x6,0
dβ 7
dt = v8

(A2.1)
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The reaction rates presented here can be expressed in function of dimensionless con-
centrations, too, and the current rates in the steady state (24):

v1 = k1x3,ss
x3

x3,ss
= v1,ssβ3 = j1β3

v2 = k2x4,ssx5,ss
x4

x4,ss

x5
x5,ss

= v2,ssβ4β5 = j1β4β5

v3 = k3x3,ssx5,ss
x3

x3,ss

x5
x5,ss

= v3,ssβ3β5 = j4β3β5

v4 = k4x2,ss
x2

x2,ss
= v4,ssβ2 = j2β2

v5 = k5x2
4,ss

(
x4

x4,ss

)2
= v5,ssβ 2

4 = j2β 2
4

v6 = k6x3,ssx4,ss
x3

x3,ss

x4
x4,ss

= v6,ssβ3β4 = j3β3β4

v7 = k7x1,ss
x1

x1,ss
= v7,ssβ1 = j3β1

v8 = k8x4,ssx6,0
x4

x4,ss

x6
x6,0

= v8,ssβ4β6 = j4β4β6

v9 = k9x2,ssx6,0
x2

x2,ss

x6
x6,0

= v9,ssβ2β6 = j4β2β6

(A2.2)

The obtained reaction rates in the steady state can be introduced in the kinetic equation
(A2.1). Further, dividing both sides of every equation with concentrations of the species
that appears on the left-hand side, we shall obtain their reciprocal concentration values on
the right-hand side. As already mentioned, they are new parameters in SNA, denoted by hi.
In the case of the considered model they are:

hi=
1

xi,ss
, where i = 1, ...,5, and h6=

1
x6,0

. (A2.3)
Taking into account relations (A2.2) and (A2.3) the kinetic equations (A2.1) can be

written as function of the SNA parameters, but they are not yet in the dimensionless form.
With this aim we shall introduce the dimensionless time by means of the rate constant of
any first order reaction, for example reaction (R7):

dτ = d t · k7 = d t · k7x1,ss
1

x1,ss
= d t ·v7,ssh1 = d t · j3h1. (A2.4)

By substitution of all relations (A2.2), (A2.3) and (A2.4) into the Eq. (A2.1), we can
simply obtain the dimensionless kinetic equations in the following form:

dβ 1
dτ = β3β4 −β1

dβ 2
dτ = h2

h1

(
j4
j3

β3β5 − j2
j3

β2 +
j2
j3

β 2
4 − j4

j3
β2β6

)
dβ 3
dτ = h3

h1

(
− j1

j3
β3 +

j1
j3

β4β5 − j4
j3

β3β5 −β3β4 +β1 +
j4
j3

β4β6

)
dβ 4
dτ = h4

h1

(
j1
j3

β3 − j1
j3

β4β5 +2 j2
j3

β2 −2 j2
j3

β 2
4 −β3β4 +β1 − j4

j3
β4β6 +

j4
j3

β2β6

)
dβ 5
dτ = h5

h1

(
j1
j3

β3 − j1
j3

β4β5 − j4
j3

β3β5 +
j4
j3

β2β6

)
dβ 6
dτ = h6

h1

(
− j4

j3
β4β6 − j4

j3
β2β6

)
dβ 7
dτ = h6

h1

j4
j3

β4β6

(A2.5)

These equations can be additionally simplified by introduction of new dimensionless
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parameters for any combination of current rates that appear several times. In the considered
case they are:

κ1 =
j1
j3

, κ2 =
j2
j3

and κ3 =
j4
j3

. (A2.6)
Hence, the dimensionless equations can be transformed to the form:

dβ 1
dτ = β3β4 −β1

dβ 2
dτ = h2

h1

(
κ3β3β5 −κ2β2 +κ2β 2

4 −κ3β2β6
)

dβ 3
dτ = h3

h1
(−κ1β3 +κ1β4β5 −κ3β3β5 −β3β4 +β1 +κ3β4β6)

dβ 4
dτ = h4

h1

(
κ1β3 −κ1β4β5 +2κ2β2 −2κ2β 2

4 −β3β4 +β1 −κ3β4β6 +κ3β2β6
)

dβ 5
dτ = h5

h1
(κ1β3 −κ1β4β5 −κ3β3β5 +κ3β2β6)

dβ 6
dτ = h6

h1
(−κ3β4β6 −κ3β2β6)

dβ 7
dτ = h6

h1
κ3β4β6

(A2.7)

The dimensionless kinetic equations immediately show if the considered variable is
slow or fast. Thus, in the considered case, concentration of the intermediate species X1 has
much higher steady state value than X2, and hence, the scaling factor h1 in the correspond-
ing kinetic equation is much lower. For this reason species X1 will be the slow one, whereas
species X2 will be the fast one.
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Model of Hypothalamic-Pituitary-Adrenal (HPA) Axis Examined by Stoichiometric Network
Analysis ( SNA), Russ. J. Phys. Chem. A Vol. 85 (2011) 2327-2335.

[26] V. M. MARKOVIĆ, Ž. ČUPIĆ, S. MAĆEŠIĆ, A. STANOJEVIĆ, V. VUKOJEVIĆ,
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Associated Dimensionless Kinetic Equations. Application to a Model of the Bray-Liebhafsky
Reaction, J. Phys. Chem. A, Vol. 112 (2008) 13452–13457.

[36] S. K. SCOTT, Chemical Chaos, Clarendon Press, Oxford, 1991.
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