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A mathematical model of the hypothalamic–pituitary–adrenal (HPA) axis with cholesterol as a dynam-
ical variable was derived to investigate the effects of cholesterol, the primary precursor of all steroid
hormones, on the ultradian and circadian HPA axis activity. To develop the model, the parameter space
was systematically examined by stoichiometric network analysis to identify conditions for ultradian oscil-
lations, determine conditions under which dynamic transitions, i.e. bifurcations occur and identify bifur-
cation types. The bifurcations were further characterized using numerical simulations. Model predictions
agree well with empirical findings reported in the literature, indicating that cholesterol levels may criti-
cally affect the global dynamics of the HPA axis. The proposed model provides a base for better under-
standing of experimental observations, it may be used as a tool for designing experiments and offers
useful insights into the characteristics of basic dynamic regulatory mechanisms that, when impaired, may
lead to the development of some modern-lifestyle-associated diseases.
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1. Introduction

The hypothalamic–pituitary–adrenal (HPA) axis is a complex and highly dynamic neuroendocrine sys-
tem of vital importance for maintaining homeostasis of metabolic functions at the organism level (Miller
& Chrousos, 2001; Lightman et al., 2002; Smith & Vale, 2006). The HPA axis integrates the function
of the hypothalamus, pituitary and adrenal glands through the action of steroid and peptide hormones.
The main representative of steroid hormones implicated in the HPA axis in humans is cortisol (CORT),
and the most relevant peptide hormones are the corticotropin-releasing hormone (CRH) and the adreno-
corticotropic hormone (ACTH) (Miller & Chrousos, 2001; Lightman et al., 2002). Cortisol, the end
product of steroidogenesis and the chief effector steroid hormone in humans exhibits both positive and
negative feedback effects on the HPA axis dynamics via its action on glucocorticoid receptors (GR)
and mineralocorticoid receptors (MR) (Kellendonk et al., 2002; Makino et al., 2002; Schulkin et al.,
1998). Due to the complex interplay between these feedback mechanisms and the coupling with the
circadian clock system, the temporal evolution of cortisol concentration in blood plasma is complex,
exhibiting ultradian oscillations that are superimposed on the circadian ones.1 In humans, the period of
cortisol ultradian oscillations can be in the range between 20 and 120 min, while the circadian period is
∼24 h (Tsigos & Chrousos, 2002; Hartmann et al., 1997; Gavrila et al., 2003).

It has become well accepted that adequate oscillatory dynamics of cortisol and other HPA axis
hormones is necessary for HPA axis function and effective maintenance of homeostasis under normal
conditions and stress (Lightman & Conway-Campbell, 2010). To uphold the oscillatory dynamics, inter-
actions comprising the HPA axis must proceed under conditions far from thermodynamic equilibrium
and the concentrations of all HPA axis hormones must be finely tuned. In that regard, derangements in
hormone concentrations may significantly alter the oscillatory dynamics of the HPA axis, decreasing
the organism’s capacity to maintain homeostasis and cope with stress.

Cholesterol, the only source of steroid hormones, is a powerful modulator of steroid hormones
concentration, and hence may impinge on the HPA axis dynamics. However, the number of studies that
directly investigate the effects of cholesterol on the HPA axis dynamics is not very extensive (Auvinen
et al., 2011, 2012; García-Prieto et al., 2007; Lomax et al., 2013). A systematic review by Auvinen
et al. (2011) shows the complexity that is associated with such studies and the difficulty to reach unison
conclusions due to the intricate nature of the problem and large variations in experimental design.

To understand the interactions between cholesterol and the HPA axis and elucidate the mecha-
nisms through which these interactions are integrated to yield a coherent HPA axis response, integral
approaches by mathematical modelling and numerical simulations are needed. The aim of mathematical
modelling is to systematically reduce the complexity of the investigated system, i.e. reduce the number
of variables to a manageable level, and derive a concise representation of the HPA axis function in the
form of a model with good predictive potential. When this goal is achieved, mathematical modelling and
numerical simulations along with dynamical systems theory (Izhikevich, 2000; Ingalls, 2013) enable us
also to study cholesterol effects on the HPA axis with high precision and predict the temporal evolution
of the HPA axis under conditions that are difficult to address experimentally.

To date, several models of the HPA axis have been proposed (Dempsher et al., 1984; Liu et al.,
1999; Keenan et al., 2001; Kyrylov et al., 2005; Savić & Jelić, 2005; Lenbury & Pornsawad, 2005;
Jelić et al., 2005; Gupta et al., 2007; Bairagi et al., 2008; McAuley et al., 2009; Conrad et al., 2009;
Walker et al., 2010; Vinther et al., 2011; Marković et al., 2011b; Maćešić et al., 2012; Scheff et al.,
2012; Sriram et al., 2012; Postnova et al., 2013; Andersen et al., 2013; Moreno-Ramos et al., 2013;

1 Ultradian rhythms have a period shorter than 24 h, whereas circadian are characterised by periods that are close to 24 h.
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Zarzer et al., 2013). The majority of models include cortisol, ACTH and CRH as key dynamic variables
to describe the HPA axis dynamics. Depending on the purpose of the study, some models include also
other species, such as cortisol bound to cortisol binding globulin and albumin (Liu et al., 1999; Kyrylov
et al., 2005), GR (Gupta et al., 2007; Walker et al., 2010; Sriram et al., 2012; Scheff et al., 2012; Zarzer
et al., 2013), aldosterone (ALDO) (Jelić et al., 2005; Marković et al., 2011b). However, cholesterol, the
only precursor of cortisol and all other steroid hormones has been introduced as a dynamic variable in
a few models only. The mechanistic model proposed by Dempsher et al. (1984) contains cholesterol,
ACTH, cortisol, enzymes and intermediates involved in cortisol biosynthesis. Yet, this model focuses
on adrenal steroidogenesis and ultradian cortisol oscillations have not been considered. The model
proposed by Meyer-Hermann et al. (2009) contains cortisol and cholesterol, while CRH and ACTH
have not been explicitly regarded as dynamic variables. This model simulates the circadian oscillatory
dynamics, while the ultradian oscillations have not been taken into account. Models by Breen et al.
(2010, 2011) include cholesterol, cortisol, aldosterone and adrenal steroid hormones as dynamic vari-
ables, but do not include higher system signals, thus neglecting CRH and ACTH. Due to the absence of
feedback mechanisms, these two models do not emulate well neither circadian nor ultradian oscillatory
dynamics of cortisol. This lack of succinct models that emulate in detail the cholesterol effect on the
HPA axis dynamics at the organism level prompted us to develop a new model that includes cholesterol
and other main hormones of the HPA axis, CRH, ACTH, cortisol and aldosterone as dynamic vari-
ables, and emulates well their complex oscillatory behaviour, comprising both circadian and ultradian
oscillations.

2. Mathematical Model Development

2.1 Mathematical description of the kinetics of biochemical pathways underlying the model
of HPA axis activity

In our previous work (Jelić et al., 2005; Marković et al., 2011b), we have developed a 4D stoichiometric
model of HPA axis activity with concentrations of CRH ([CRH]), ACTH ([ACTH]), cortisol ([CORT])
and aldosterone ([ALDO]) as dynamic variables. We have shown that this model exhibits sustained
ultradian oscillations of cortisol, ACTH and aldosterone. When coupled to the circadian clock function,
this model also emulated the complex superposition of ultradian oscillations on the circadian ones and
demonstrated strong predictive capacity and potential for investigating the HPA axis response under
various acute and chronic stress conditions (Jelić et al., 2008, 2009; Marković et al., 2011a). Building on
this initial model, we introduced concentration of cholesterol ([CHOL]) as the fifth dynamical variable.
A diagram showing the relationship between key model variables is presented in Fig. 1(a), while the
mathematical model is given in Table 1.

The new model (Table 1) consists of 13 reaction steps, which concisely represent the most important
experimentally characterized pathways that epitomize the HPA axis. Reaction steps (R1), (R2) and (R3)
describe the biosynthesis of cholesterol, CRH and aldosterone, respectively. Reaction step (R1) exempli-
fies cholesterol biosynthesis in the liver and the gastrointestinal tract, absorption of dietary cholesterol
and receptor-mediated uptake and internalization of plasma lipoprotein-bound cholesterol (DeBose-
Boyd, 2008; Lu et al., 2001; Hu et al., 2010). CRH production from the hypothalamic paraventricular
nucleus is represented by (R2) and aldosterone production under the renin–angiotensin system con-
trol by step (R3). Reaction step (R4) describes the CRH stimulated ACTH production from the pitu-
itary. Reaction steps (R5) and (R6) summarize the multifaceted ACTH-mediated cortisol steroidogen-
esis in the zona fasciculata (R5) and aldosterone steroidogenesis in the zona glomerulosa (R6) of the
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(a) (b)

(c)

Fig. 1. (a) Schematic presentation of the relationship between key dynamical variables in the model of cholesterol effects on the
hypothalamic–pituitary–adrenal (HPA) axis dynamics. The arrows represent interactions between major anatomical components
implicated in the HPA axis dynamics, conveyed by the model variables cholesterol, CRH, ACTH, cortisol and aldosterone (details
of these interactions, i.e. reaction pathways comprising the model are given in the main text of Section 1). (b) The circadian func-
tion D (see Section 2.3). (c) Coupling between circadian and ultradian oscillations introduces a delay in the onset/termination
of ultradian oscillations. At the borders of the shaded area, the ultradian stationary state changes its stability by passing through
a supercritical Andronov–Hopf bifurcation (dots indicate stable and squares unstable ultradian stationary states of cortisol con-
centration); the instability condition was derived according to SNA (see Section 2.2). Time is given in hours (h) and molar
concentration in M = mol dm−3 (these abbreviations were used throughout).

adrenal cortex and their secretion into the global circulation (Miller & Auchus, 2011; Hu et al., 2010;
Gallo-Payet & Payet, 2003). Reaction step (R7) describes the complex cortisol-mediated positive feed-
back (feed-forward) regulation of the HPA axis in the form of cubic autocatalysis. Reaction step (R8)
describes the cortisol-mediated negative feedback regulation of the HPA axis in the form of quadratic
autoinhibition. More detailed explanation on how these complex reactions were derived is given in
Jelić et al. (2005). Reaction steps (R9–R13) describe the elimination of cholesterol, CRH, ACTH, cor-
tisol and aldosterone, respectively. Notably, reaction step (R9) entails several processes that reduce the
excess of free cholesterol to normal physiological levels, such as cholesterol esterification and storage
in lipid droplets, cholesterol incorporation in cellular membranes (membrane biogenesis), production
of bile acids, oxysterols, vitamin D and other steroid hormones (Hu et al., 2010; Redinger, 2003). Pn

(n = 1, . . . , 5) are elimination products of corresponding species, which have no effect on the HPA
axis dynamics.

Temporal dynamics of the concentrations of all species is governed by a system of ordi-
nary differential equations (ODE) derived from reaction steps shown in Table 1 by the law of
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Table 1 Model of the HPA axis activity with cholesterol as a dynamical variable

k1−−−→ CHOL k1 = 1.38 × 10−4 mol dm−3 min−1 (R1)
k2−−−→ CRH k2 = 1.83 × 10−8 mol dm−3 min−1 (R2)
k3−−−→ ALDO k3 = 6.09 × 10−11 mol dm−3 min−1 (R3)

CRH
k4−−−→ ACTH k4 = 1.83 × 104 min−1 (R4)

CHOL + ACTH
k5−−−→ CORT k5 = 11.94 mol−1 dm3 min−1 (R5)

CHOL + ACTH
k6−−−→ ALDO k6 = 9.552 × 10−2 mol−1 dm3 min−1 (R6)

ACTH + 2CORT
k7−−−→ 3CORT k7 = 1.26 × 1014 mol−2 dm6 min−1 (R7)

ALDO + 2CORT
k8−−−→ CORT k8 = 7.05 × 1012 mol−2 dm6 min−1 (R8)

CHOL
k9−−−→ P1 k9 = 4.5 × 10−2 min−1 (R9)

CRH
k10−−−−→ P2 k10 = 1.1 × 10−1 min−1 (R10)

ACTH
k11−−−−→ P3 k11 = 5.35 × 10−2 min−1 (R11)

CORT
k12−−−−→ P4 k12 = 4.1 × 10−1 min−1 (R12)

ALDO
k13−−−−→ P5 k13 = 1.35 × 10−1 min−1 (R13)

mass action:

d[CHOL]

dt
= k1 − (k5 + k6)[CHOL][ACTH] − k9[CHOL] (1a)

d[CRH]

dt
= k2 − (k4 + k10)[CRH] (1b)

d[ACTH]

dt
= k4[CRH] − (k5 + k6)[CHOL][ACTH] − k7[ACTH][CORT]2 − k11[ACTH] (1c)

d[CORT]

dt
= k5[CHOL][ACTH] + k7[ACTH][CORT]2 − k8[ALDO][CORT]2 − k12[CORT] (1d)

d[ALDO]

dt
= k3 + k6[CHOL][ACTH] − k8[ALDO][CORT]2 − k13[ALDO]. (1e)

In (1a–1e), the concentrations of cholesterol, CRH, ACTH, cortisol and aldosterone are denoted by
[CHOL], [CRH], [ACTH], [CORT] and [ALDO], respectively, and the related kinetic rate constants are
designated by km, m = 1–13.

2.2 Determination of oscillatory regions by systematic analysis of the parameter space using
stoichiometric network analysis

To determine the oscillatory region, the parameter space was systematically examined by stoichiomet-
ric network analysis (SNA), a general flux balance analysis method that relies on the analysis of sto-
ichiometric characteristics of a network (Clarke, 1980, 1988). A comprehensive derivation of general
equations and details of SNA application for the analysis of bifurcation mechanisms can be found else-
where (Clarke, 1980, 1988; Schmitz et al., 2008; Kolar-Anić et al., 2010; Čupić et al., 2011); we present
here the most important steps that relate to the analysis of the model.
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The first step in SNA is to detect steady-state reaction pathways in the model (R1)–(R13) that are
inherently coupled through stoichiometric constraints. This derivation, presented in Appendix, yields
the following relationships:

v1,ss = v5,ss + v6,ss + v9,ss (2a)

v2,ss = v4,ss + v10,ss (2b)

v3,ss + v6,ss = v8,ss + v13,ss (2c)

v5,ss + v7,ss = v8,ss + v12,ss (2d)

v4,ss = v5,ss + v6,ss + v7,ss + v11,ss, (2e)

where vm,ss is the reaction rate of reaction m (m = 1–13) at the steady state.
The next step in SNA is to investigate the stability of the network’s motion around a steady state

after an infinitely small perturbation. To this end, one uses the linearized dynamics operator near the
steady state (the Jacobian) J:

dx

dt
= Jx, (3)

where x is the concentration vector whose components [Xn] are concentrations of intermediary chem-
ical species of a reaction network (here, n = 1, 2, . . . , 5, and [X1] = [CHOL], [X2] = [CRH], [X3] =
[ACTH], [X4] = [CORT], [X5] = [ALDO]; see Appendix for details).

The matrix operator J is defined in SNA (Clarke, 1980, 1988; Čupić et al., 2011) by:

J = −V( j) diag h, (4)

where h is a vector of reciprocal steady-state concentrations, whose components hi are reciprocal steady-
state concentrations of the intermediates, diag h is its diagonal matrix, while V( j) is a current rate
matrix, given by the expression:

V( j) = −S diag(Ej)KT, (5)

where S is the stoichiometric matrix, i.e. an operator whose elements are stoichiometric coefficients,
Sn,m, defined as Sn,m = sD

n,m − sL
n,m, where, sL

n,m and sD
n,m, represent stoichiometric coefficients of species

Xn on the left (L) and right (D) sides of the chemical equation for Rm, respectively, where n stands for
total number of intermediary species and m is total number of reactions in the reaction network (see
Appendix for details). If the underlying kinetics occurs according to the law of mass action, KT in (5)
represents the transpose of the matrix of reaction orders, whose elements are general stoichiometric
coefficients of species Xn standing on the left side of the reaction Rm, sL

n,m.
Here, elements of diag h, h = [h1, h2, . . . h5], are the reciprocals of steady-state concentrations of the

model’s intermediary chemical species cholesterol, CRH, ACTH, cortisol and aldosterone, respectively,
whereas the matrix K is:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11R12 R13

K =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 2 2 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

[CHOL]
[CRH]
[ACTH]
[CORT]
[ALDO]

(6)
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By substituting matrices K (6), S (Appendix, A.3) and E (Appendix, A.5) in (5), current rate matrix
V(j) can be derived. The elements of the matrix V(j) are

V(1, 1) = j1 + j2 + j5 + 2j9 + j10 + j11

V(1, 3) = j1 + j5 + 2j9 + j10 + j11

V(2, 2) = j1 + j3 + j4 + j5 + j7 + j8 + 2j9 + j10 + 2j11

V(3, 1) = j1 + j5 + 2j9 + j10 + j11

V(3, 2) = −j1 − j4 − j5 − j7 − j8 − 2j9 − j10 − 2j11

V(3, 3) = j1 + j4 + j5 + j7 + j8 + 2j9 + j10 + 2j11

V(3, 4) = 2j7 + 2j8 + 2j11

V(4, 1) = −j1 − j5 − j9

V(4, 3) = −j1 − j5 − j7 − j8 − j9 − j11

V(4, 4) = 2j1 + j5 − j8 + 2j9

V(4, 5) = j1 + j7 + j9 + j11

V(5, 1) = −j9 − j10 − j11

V(5, 3) = −j9 − j10 − j11

V(5, 4) = 2j1 + 2j7 + 2j9 + 2j11

V(5, 5) = j1 + j6 + j7 + j9 + j10 + j11

V(1, 2) = V(1, 4) = V(1, 5) = V(2, 1) = V(2, 3) = V(2, 4)

= V(2, 5) = V(3, 5) = V(4, 2) = V(5, 2) = 0 (7)

Since the stability of the stationary state is defined by the eigenvalues λ of the linearized operator
J, which are given as roots of the characteristic polynomial, for the model analysed here with five
independent intermediate species i.e. five dynamic variables, the characteristic polynomial of the fifth
order has to be solved:

Det[λI − J] = λ5 + α1λ
4 + λ3α2 + λ2α3 + λα4 + α5, (8)

where αi (i = 1, 2, . . . , 5) is the coefficient of the corresponding eigenvalue λ5−i, and I is the unit matrix.
By convention, α0 = 1.

Coefficients αi of the characteristic equation (8) represent the sum of all diagonal minors M of
dimensions i × i (i = 1, . . . , 5) of the matrix V(j) multiplied by corresponding sets of reciprocal con-
centrations hi (Clarke, 1980, 1988; Čupić et al., 2011). For instance, coefficient α3 is the sum of all
combinations of diagonal minors of dimension 3 × 3, i.e. minors of the third order multiplied by its
corresponding product of reciprocal concentrations:

α3 = M123h1h2h3 + M124h1h2h4 + M125h1h2h5 + M134h1h3h4 + M135h1h3h5 + M145h1h4h5

+ M234h2h3h4 + M235h2h3h5 + M245h2h4h5 + M345h3h4h5. (9)
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Although the derivation of the characteristic equation is precisely defined, the obtained fifth order
equation (8) is generally not possible to solve analytically, requiring numerical analysis of particular
cases with defined parameter values. To circumvent this obstacle, SNA often concludes after calculat-
ing the coefficients αi, when the so-called alpha approximation is employed. In many instances, SNA
concludes even earlier, after finding diagonal minors M of the matrix V(j) that contain negative terms.
For many applications, such approximations can yield instability conditions that are sufficiently accu-
rate (Schmitz et al., 2008; Kolar-Anić et al., 2010; Čupić et al., 2011; Marković et al., 2011b; Maćešić
et al., 2012). Otherwise, exact instability conditions are acquired based on the Routh–Hurwitz criterion.
According to this criterion the number of eigenvalues with positive real parts is equal to the number of
sign changes in the Routh array (Clarke & Jiang, 1993):

R =
(

1, Δ1,
Δ2

Δ1
,
Δ3

Δ2
, . . . ,

Δn

Δn−1

)
, (10)

where Δi, i = 1, . . . , n, is ith Hurwitz determinant, defined as the determinant of the leading principal
minor of the Hurwitz matrix H.

For the analysed model, where n = 5, the Hurwitz matrix is

H =

⎡
⎢⎢⎢⎢⎣

α1 α3 α5 0 0
1 α2 α4 0 0
0 α1 α3 α5 0
0 1 α2 α4 0
0 0 α1 α3 α5

⎤
⎥⎥⎥⎥⎦ (11)

Obviously, αi = 0, for i > 5, whereas coefficients αi, i � 5, of the Hurwitz matrix H can be written dif-
ferently, depending on the applied method of analysis. Straightforward linearization of the system of
ODE (1a–1e) would yield expressions that are functions of the reaction rates and steady-state concen-
trations. By SNA, the same coefficients would be obtained as functions of current rates and reciprocal
concentrations in a steady state. In either way, a fifth order characteristic equation would be obtained
that needs to be solved numerically. There are no principal differences between these approaches, but
the advantage of using SNA instead of direct linearization of equation lies in the ease with which initial
conditions for numerical solutions can be found. In a large parameter space, which in the case of the
proposed model has 13 reactions and hence 13 corresponding rate constants, finding convenient initial
conditions for numerical analysis is not easy. Using SNA, the search for initial conditions is facilitated
by the so-called alpha approximation, which provides a ‘frame’ for looking for the instability, making
it possible to identify an area in the parameter space where unstable steady states could be numerically
found and characterized by evaluating the eigenvalues λ from (8). Direct analysis of (1a–1e) does not
yield this advantage.

Let us underline here that it is not necessary to calculate precisely the eigenvalues of the linearized
operator to determine the stability of a steady state. Rather, the steady state is stable if all Hurwitz
determinants are positive.

The Hurwitz matrix gives also conditions for the appearance of the Andronov–Hopf bifurcation,
which is of great importance because it is a commonly encountered source of oscillations in dynami-
cal system. The Andronov–Hopf bifurcation is a local bifurcation through which a dynamical system
loses/gains stability as a pair of complex conjugate eigenvalues crosses the imaginary axis. This bifurca-
tion indicates appearance/disappearance of periodic behaviour. The Andronov–Hopf bifurcation occurs
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when Δn−1 = 0 (Clarke & Jiang, 1993; Liu, 1994), which for the analysed model is when:

Δ4 =

⎡
⎢⎢⎣

α1 α3 α5 0
1 α2 α4 0
0 α1 α3 α5

0 1 α2 α4

⎤
⎥⎥⎦ = 0 (12)

Moreover, the saddle-node bifurcation can be identified from αn = 0, as shown by Clarke & Jiang (1993)
and Liu (1994), which for the analysed model gives:

α5 = 0. (13)

Beside general problems related with the determination of steady-state stability which were mentioned
above, the original SNA, as described by Clarke (1980, 1988), gives the coefficients αi, derived from
the matrix V(j) (7) and subsequent Hurwitz matrices, as functions of the current rates ji. As mentioned
earlier (Kolar-Anić et al., 2010; Čupić et al., 2011; Marković et al., 2011b; Maćešić et al., 2012),
diagonal minors, and, hence, coefficients αi, can be completely expressed as functions of reaction rates
at the steady states, vm,ss. Since reaction rates are experimentally available quantities, the latter form
of expressing minors or coefficients αi is not only more convenient to deal with, but also easier to
understand and relate to real properties of the system.

As the instability condition depends on reaction rates at the steady state, vm,ss, which are functions
of rate constants and steady-state concentrations of the reactive species (Appendix, (A.6a–A.6m)), to
determine whether it is fulfilled, the steady-state concentrations of the model’s intermediary chemical
species, cholesterol ([CHOL]ss), CRH ([CRH]ss), ACTH ([ACTH]ss), cortisol ([CORT]ss) and aldos-
terone ([ALDO]ss), need to be calculated.

The steady-state concentration of cholesterol, obtained by equating (1a) with zero yields:

[CHOL]ss = k1

[ACTH]ss(k1 + k8) + k9
, (14)

while, CRH is obtained by equating (1b) with zero:

[CRH]ss = k2

k4 + k10
. (15)

By equating (1c) with zero and substituting in it (15), the steady-state concentration of ACTH is
obtained:

[ACTH]ss = k2k4

(k4 + k10)[(k5 + k6)[CHOL]ss + k7([CORT]ss)2 + k11]
, (16)

whereas the steady-state concentration of aldosterone is obtained by equating (1e) with zero:

[ALDO]ss = k3 + k6[CHOL]ss[ACTH]ss

k8([CORT]ss)2 + k13
. (17)
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By substituting (14), (16) and (17) in (1d) equalled to zero, an implicit equation for the steady-state
cortisol concentration, x4,ss, is obtained:

[k7k8(k1 − k9[CHOL]ss)]([CORT]ss)
4 − {[(k5 + k6)k8k12][CHOL]ss}([CORT]ss)

3

+ {(k6 − k5)k8k9([CHOL]ss)
2 − [k7k9k13 + k3(k5 + k6)k8 − k1k8(k6 − k5)][CHOL]ss}([CORT]ss)

2

− {[(k5 + k6)k12k13][CHOL]ss}[CORT]ss − (k5k9k13([CHOL]ss)
2 − k1k5k13[CHOL]ss) = 0. (18)

Equations (14–18) demonstrate that steady-state concentrations of all species in the extended HPA axis
model with cholesterol are functions of kinetic rate constants, which means that bifurcation conditions
in (12) and (13) can be used to generate instability conditions for the steady states of the focus (19) or
saddle type (20), respectively:

Δ4 < 0, (19)

α5 < 0. (20)

Since inequalities (19) and (20) depend solely on the kinetic rate constants, knowing their values is
sufficient condition to determine whether the investigated model of cholesterol effect on the HPA axis
activity can have unstable states, which makes this method very convenient for numerical evaluation of
steady-states stability. Solutions of the system of ODE (1a–1e) obtained by numerical integration give
the concentrations of the dynamical species CHOL, CRH, ACTH, CORT and ALDO and their temporal
evolution (Fig. 2).

To determine the oscillatory region and examine the effect of cholesterol concentrations on the
ultradian HPA dynamics, rate constants k1 and k9, related to cholesterol inflow and outflow, respectively,
were broadly varied, the steady states were identified using (14–18) and their stability was determined
from the instability conditions (19) and (20). The obtained oscillatory domain as a function of k1 and k9

is presented in Fig. 3.
The upper limit of the instability region in Fig.3 represents Andronov–Hopf bifurcation points for

different pairs of k1 and k9, where the condition given in (19) is satisfied for the only steady state existing
in this part of the parameter space. The lower limit represents saddle-loop bifurcations,2 where a pair of
new steady states appears as a solution of (14–18), one of them being stable (with all Hurwitz matrices
being positive), and the other one with saddle type instability (α5 being negative, see (20)).

The rather narrow instability region presented in Fig.3 compellingly shows that oscillatory dynamic
states cannot be easily found by guessing, further stressing the importance of methods for systematic
global examination of the parameter space, such as SNA.

2.3 Mathematical description of the coupling between circadian and ultradian oscillations

The model (R1–R13), in the form presented in Table 1, reflects the ultradian dynamics of the HPA axis
(Fig. 2). To account for CRH production, which is governed by the circadian clock system situated in
the suprachiasmatic nucleus in the anterior hypothalamus, an extrinsic periodic function (D) has been
introduced. Function D is designed to appropriately mimic the asymmetry of the 24-h rhythm in humans,

2 A saddle-loop or homoclinic bifurcation is an infinite-period bifurcation that occurs when a periodic orbit, i.e. a limit cycle
moves closer and closer to a saddle point. At the bifurcation, the cycle touches the saddle point and becomes a homoclinic
orbit (Strogatz, 1994).
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Fig. 2. Time-series showing the temporal dynamics of concentrations of: cholesterol ([CHOL]), CRH ([CRH]), ACTH ([ACTH]),
cortisol ([CORT]) and aldosterone ([ALDO]), obtained by numerical integration of ODE (1a–1e) for the values of kinetic rate
constants given in Table 1.

Fig. 3. The oscillatory domain with respect to control parameters k1 and k9 is confined between the two straight lines.
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with the nocturnal phase lasting 8 h (Fig. 1(b); Marković et al., 2011a):

D = d1 − 0.079145093 × d2 + {0.064 × sin(2π t/1440) + 0.12 × abs[sin(π t/1440)]} × d2 (21)

In (21), t is time in minutes and 1440 in the denominator of the trigonometric function argument repre-
sents the number of minutes in 1 day, i.e. the period of the circadian oscillation.

The circadian rhythm function D (Fig. 1(b)) is coupled to the model in Table 1 through the CRH
production step (R2), transforming the kinetic rate constant k2 into a periodic function k2,D(t) = k2 × D.
Coupling between ultradian and circadian rhythms gives rise to complex daily variations in the con-
centration of HPA axis hormones, as shown in Fig. 1(c), but does not qualitatively alter the dynamical
properties of the model. Instead, coupling between circadian and ultradian rhythms introduces a delay
in the onset/termination of ultradian oscillations, giving damped oscillatory evolution even when the
steady states are stable. Stable foci (dots) are observed in the shaded region, while unstable foci (squares)
are present above this region, for higher cortisol concentrations Fig. 1(c). On the borders of the shaded
area the ultradian stationary state changes its stability by passing through a supercritical Andronov–
Hopf bifurcation determined by SNA using (12).

Solutions of the system of ODEs (1a–1e) with k2 or k2,D yield for the same set of parameters, that
is the same rate constants ki, i = 1, 3–13 (Table 1) and the same initial conditions, different values of
CHOL, CRH, ACTH, CORT and ALDO concentrations, as evident from the results shown in Figs 2
and 4, respectively.

3. Results and Discussion

3.1 Numerical simulation of cholesterol and HPA axis dynamics

Serum cholesterol levels vary between individuals, but also in the same individual, where diurnal and
ultradian variations have been observed (Jones & Schoeller, 1990; Peterson et al., 1960; Cirelli et al.,
2004). In particular, a pronounced depression of cholesterol synthesis was observed during wakeful-
ness (Jones & Schoeller, 1990), modelled here as the daytime period, whereas expression of several
genes related to the synthesis of cholesterol peaks during the resting phase (Cirelli et al., 2004), mod-
elled here as the nighttime. These experimental findings are correctly accounted for by the model, as
evident from the temporal evolution of cholesterol and the HPA axis hormones shown in Fig. 4.

Mean daily levels of cholesterol and selected HPA axis hormones predicted by numerical simula-
tions are compared with their corresponding values predicted by the basic model of Jelić et al. (2005)
and basal levels in human plasma (Table 2).

As can be seen from the data presented in Fig. 4 and Table 2, the model emulates diurnal and ultra-
dian variations in cholesterol and HPA axis hormones level, and the concentrations of cholesterol, CRH,
cortisol and aldosterone predicted by modelling fall in physiologically relevant ranges. The cholesterol
concentration is several orders of magnitude higher than the concentration of CORT and ALDO, which
are derived from cholesterol. The amplitude of ultradian cholesterol oscillation is therefore very small
in comparison with its mean concentration, whereas the amplitude of CORT and ALDO oscillations
may be comparable with their mean daily values. The current model is in better agreement with real
measurements than the model without cholesterol previously proposed by Jelić et al. (2005), where
both, CRH and ACTH concentrations are several orders of magnitude higher than their actual physi-
ological values. The only discrepancy from real measurements that presently remains unsolved is the
concentration of ACTH, which is three orders of magnitude higher. This discrepancy arises due to the
conciseness of the model, which does not include peptide precursors of ACTH and other biologically
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Fig. 4. Numerical simulations of cholesterol and HPA axis dynamics under normal physiological conditions. Temporal evolution
of: (a) cholesterol, (b) ACTH, (c) cortisol, (d) aldosterone and (e) CRH showing both diurnal and ultradian rhythmicity. Initial
conditions for numerical integration are given in Section 5. The indicated temporal scale reflects concentration variations within
1 day (24 h). (The actual integration time is a sequence of continuously increasing values, which can be obtained from the values
shown in the image by adding for each subsequent day an integer multiple of 24 to the values given for the first day.) The shaded
area indicates the rest period, lasting from 22:00 o’clock in the evening to 6:00 o’clock in the morning.

active steroid hormones. Further model enlargement may correct this difference in a similar way as the
introduction of cholesterol enabled the adjustment of CRH and ALDO concentrations, which were too
high in previous models (Table 2; Jelić et al., 2005, 2008, 2009; Marković et al., 2011a,b).

3.2 Numerical simulation of HPA axis dynamics under cholesterol regulation

To assess the potential of the proposed model to emulate the effect of cholesterol on the HPA axis
dynamics, kinetic rate constants k1, describing cholesterol inflow (due to biosynthesis and resorption
from the digestive tract) and k9, describing its outflow (due to chemical transformations and elim-
ination), were systematically varied from low to high values in the parameter space domain iden-
tified by SNA examination of steady-state stability (Fig. 3, and the last two paragraphs in Section
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Table 2 Mean daily levels of cholesterol and HPA axis hormones CRH, ACTH, cortisol and aldos-
terone predicted by the HPA axis model with cholesterol (Table 1), Jelić et al. (2005) model and in vivo
measured normal basal levels. Values refer to normal physiological conditions. M = mol dm−3

Mean HPA model by HPA model with Normal physiological
concentration/M Jelić et al. (2005) CHOL (Table 1) levels/M

CHOLa – 3.07 × 10−3 3.10 × 10−3b to 5.20 × 10−3c

CRH 8.85 × 10−9 8.85 × 10−13 7.70 × 10−13 to 2.50 × 10−12d

ACTH 8.85 × 10−8 8.38 × 10−8 2.20 × 10−12 to 1.33 × 10−11e

CORT 2.41 × 10−8 2.86 × 10−8 5.52 × 10−8 to 6.90 × 10−7f

ALDO 1.62 × 10−8 6.07 × 10−10 4.70 × 10−10 to 4.27 × 10−9g

aTotal blood cholesterol.
bhttp://www.merckmanuals.com/professional/endocrine_and_metabolic_disorders/lipid_disorders/hypolipidemia.html (last
accessed September 27, 2014).
chttp://www.mayoclinic.com/health/cholesterol-levels/CL00001 (last accessed September 27, 2014).
dHashimoto et al. (1993).
ehttp://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/8411 (last accessed September 27, 2014).
http://www.nlm.nih.gov/medlineplus/ency/article/003695.htm (last accessed September 27, 2014).
fhttp://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/8545 (last accessed September 27, 2014).
ghttp://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/8557 (last accessed September 27, 2014).

2.2). Results obtained by numerical simulations of HPA axis dynamics under cholesterol regulation
are shown in Fig. 5.

As can be seen from the diagrams shown in Fig. 5, the model predicts both quantitative changes in
cortisol levels and qualitative dynamic transitions in HPA axis activity under the influence of choles-
terol. Starting from normal physiological levels indicated by arrows in Fig. 5, and moving towards
higher k1 (Fig. 5(a)) or lower k9 (Fig. 5(b)), which in either case yields increased cholesterol concentra-
tions, the amplitude of ultradian cortisol oscillations dampens (exemplified here for different values of
k1, Fig. 5(c–g)). Conversely, the amplitude of cortisol oscillations increases when going in the opposite
direction, towards lower k1 (Fig. 5(a)) or higher k9 (Fig. 5(b)), which corresponds to lower cholesterol
levels. In other words, lowering cholesterol levels will increase the amplitude of ultradian oscillations.
As long as the ultradian oscillations remain nearly harmonic, occurring with a sufficiently high fre-
quency (one or more ultradian oscillation per hour, as in Figs 4 and 5(c, d)), this will initially enhance
the organism’s capacity to cope with stress (discussed in detail in Jelić et al., 2008, 2009; Marković
et al., 2011a). However, further lowering of cholesterol levels will give rise to high-amplitude relax-
ation oscillations that occur with rather low frequency (one oscillation in several hours). In this regime,
the dynamics of HPA axis ‘switches’ periodically between two steady states, ‘staying’ close to one sta-
ble steady state for extended times during the day, and occasionally ‘jumping’ to the other state (as in
Fig. 5(f, g)). Hence, the dynamic regulation of HPA axis activity is being diminished. Such dynamic
transitions are difficult to detect experimentally/clinically, but may occur in early stages of a disease,
recognized as hyper responsiveness of the HPA axis to a challenge.

Here, we note that the diagrams of dynamic transitions shown in Fig. 5 reflect changes at a particular
time-point during the day, in this instance at noon (t = 12 : 00 o’clock). If any other time-point had been
considered, these diagrams would have been somewhat different, reflecting differences in the actual
concentration of HPA axis hormones, which are different at other times of the day. However, these
differences would only affect quantitative values and not critically alter the interpretation of the data,
enabling us to draw the same general conclusions. Thus irrespective of the actual time-point that is being
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Fig. 5. Changes in HPA axis dynamics under cholesterol regulation. (a) HPA axis dynamics as a function of cholesterol inflow
at a constant outflow, k9 = 4.5 × 10−2 min−1. (b) HPA axis dynamics as a function of cholesterol outflow at a constant inflow,
k1 = 1.38 × 10−4 M min−1. For low values of cholesterol inflow/high values of cholesterol outflow, mean daily cholesterol levels
are low, the ultradian regulation of HPA axis is being lost and states with low mean daily cortisol levels are being established
(full squares). Similarly, the dynamic ultradian regulation is also lost at the high end of cholesterol concentrations, arising due
to high-cholesterol inflow/low outflow, where states with high mean daily cortisol levels are being observed (dots). Open circles
denote the minimum/maximum of ultradian oscillations at a selected time-point (noon, t = 12:00 o’clock). For this particular
time-point, the oscillatory ultradian regulation of HPA axis activity is obtained in an interval of mean cholesterol concentra-
tions 3.60 × 10−4 M < [CHOL]mean < 3.20 × 10−3 M. Arrows indicate oscillatory states of cortisol concentration realized for
rate constants values given in Table 1. Daily variation in cortisol concentration for different values of cholesterol inflow: (c)
k1 = 1.35 × 10−4 M min−1, (d) k1 = 1.30 × 10−4 M min−1, (e) k1 = 1.00 × 10−4 M min−1, (f) k1 = 2.40 × 10−5 M min−1 and
(g) k1 = 1.68 × 10−5 M min−1.

considered, the diagrams presented in Fig. 5 clearly show that cholesterol effects on HPA axis activity
are complex, dependent on which part of the parameter space is being analysed and what property
of the system is being considered. They also show why it is difficult to compare experimental results
between groups, as they are seldom performed under exactly identical conditions, and why seemingly
contradictory conclusions may be reached in different studies.

For example, Auvinen et al. (2012) show that the amplitude of plasma corticosterone (the pri-
mary glucocorticoid in rodents) is larger in mice fed on a low-fat diet, than in mice fed on a high-fat
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diet (Fig. 2 in Auvinen et al., 2012), leading to the interpretation that HPA activity is dampened in
response to elevated cholesterol levels. Similarly, Tyrka et al. (2012) show that cortisol response to
neuroendocrine challenge is reduced in humans with several metabolic risk factors including elevated
cholesterol levels (Fig. 3 in Tyrka et al., 2012). Both observations are in agreement with our model
predictions, showing that the cortisol oscillation amplitude is smaller for higher cholesterol levels,
which are realized for high k1 or low k9 (Fig. 5). In contrast, a positive correlation was observed
between total cholesterol and corticosterone levels (Fig. 3 in Evans et al., 2013), leading to a seem-
ingly opposite conclusion that HPA axis activity is enhanced in response to cholesterol elevation in
obesity. On the global level, our model predicts that cortisol concentration increases for increasing
cholesterol levels (Fig. 5), paralleling the experimental findings by Evans et al. (2013) showing that
mean corticosterone levels increase with cholesterol. At the same time, the amplitude of ultradian
oscillations decreases, as shown by Auvinen et al. (2012) and Tyrka et al. (2012). Thus, mathemati-
cal modelling suggests that there are no contradictions at the level of primary data, but that seemingly
opposite conclusions may be drawn because HPA axis dynamics was analysed in different parts of the
parameter space.

Dynamic transitions in HPA axis activity observed for high k1/low k9 values (Fig. 5), which reflect
conditions where cholesterol levels are high, are associated with the transition of ultradian oscillations
through a supercritical Andronov–Hopf bifurcation. The Andronov–Hopf bifurcation was confirmed
using the model without circadian rhythms, where the steady states were identified using (14–18) and
their stability was determined from the instability conditions (19) and (20). In addition, the Andronov–
Hopf bifurcation was confirmed by numerical simulations, that is from the linear relationship of the
amplitude of small limit cycle oscillations squared as a function of the control parameter (A2 = f (k1)

and A2 = f (k9), data not shown).
Properties of the supercritical Andronov–Hopf bifurcation can be linked to some empirically

well-established properties of the HPA axis activity. For example, the reversibility of a supercritical
Andronov–Hopf bifurcation is consistent with numerous experimental and clinical studies showing that
symptoms caused by high-cholesterol levels, which eventually lead to the development of metabolic
syndrome, coronary and artery diseases, are reversible and the HPA axis can restore its normal dynam-
ics after decreasing cholesterol levels by returning to healthy lifestyle and/or using cholesterol reducing
drugs (see, e.g. a recent review by Akbaraly et al., 2010). Furthermore, the gradual reduction in ultradian
oscillation amplitude, which is a hallmark of the Andronov–Hopf bifurcation, is in agreement with the
common notion that systems under chronic stress exhibit an ever lower ‘excitability’ threshold. As the
amplitude of ultradian oscillations of HPA axis hormones becomes smaller, the same perturbation may
elicit a more intense response because the system’s end point is further away from the stable manifold
than under conditions where the amplitude of the limit cycle is larger.

In the limit of low cholesterol levels (decreasing k1 and increasing k9, Fig. 5), the model predicts
an initially beneficial increase in the amplitude of ultradian cortisol oscillations. As cholesterol lev-
els continue to fall, the model predicts a decrease in dynamic ultradian regulation of HPA activity,
in line with experimentally observed decrease in HPA axis activity that is experimentally verified by
Auvinen et al. (2012). In the model, dynamic regulation capacity is being lost through an exponential
increase in the period of ultradian oscillations (Fig. 5), which eventually leads to an abrupt break in
ultradian regulation at very low cholesterol values. Like hypercholesterolemia (Bhatnagar et al., 2008),
hypocholesterolemia (Vyroubal et al., 2008) can be associated with adverse conditions, most notably
Addison’s disease (Betterle & Morlin, 2011), but also severe acute and chronic stress (Heim et al., 2000;
Gunnar & Vazquez, 2001; Guilliams & Edwards, 2010), or intracerebral haemorrhages (Lanterna et al.,
2013). However, the impact of hypocholesterolemia on dynamic transitions in HPA axis activity is less
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well documented in the literature, yielding a limited experimental basis for model validation under these
conditions.

3.3 Effect of acute cholesterol stress on the HPA axis dynamics

In addition to intrinsic daily variations, serum cholesterol levels change in response to interactions with
the environment, such as feeding, physical and emotional challenge (Cella et al., 1995). To model the
effect of physiological fluctuations in cholesterol concentrations on the HPA axis activity, we induced
single-pulse changes in cholesterol concentrations (Fig. 6).

Fig. 6. Response of the HPA system to acute perturbations with cholesterol. (a) Daily variation in cortisol levels (left) and a
daytime ultradian cortisol oscillation selected for single-pulse perturbations with cholesterol (right). Points A–D designate the
phase of the selected ultradian oscillation at which the cholesterol perturbation was applied. (b) Changes of HPA axis dynamics
in response to perturbations with cholesterol inflicted in the: minimum (A), down-to-up inflection point (B), maximum (C) and
up-to-down inflection point (D) of the selected ultradian cortisol oscillation shown in (a). The perturbation intensity was the same
in all cases, [CHOL] = 1.875 × 10−4 M.
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Fig. 7. Differential response of the HPA axis model to cholesterol perturbations applied during the daytime (open circles) and at
night (dots). The perturbation intensity was the same in all cases, [CHOL] = 1.875 × 10−4 M. All perturbations were performed
at the same circadian phase, at daytime (t = 10:00 o’clock in the morning, open circles) and during the night (t = 02:00 o’clock
at night, dots), and at the same ultradian phase, corresponding to the downward inflection point of the selected daytime ultradian
oscillation (Point D in Fig. 6(a)). The effect of a perturbation was evaluated by comparing the amplitude (A) of an arbitrar-
ily selected reference oscillation that follows the perturbation with the amplitude (A0) of the same reference oscillation in an
unperturbed system.

As evident from the data presented in Fig. 6, acute changes in cholesterol level affect the global HPA
axis activity. The cause-and-effect relationship is complex, since the same change in cholesterol level
may induce different effects on HPA axis dynamics—the cortisol amplitude may diminish, increase or
remain unaltered, depending on the ultradian phase of the HPA cycle at which the perturbation of choles-
terol levels has occurred (Fig. 6). This is a natural feature of systems that exhibit rhythmic behaviour in
the vicinity of a supercritical Andronov–Hopf bifurcation, reflecting differences in the actual position
of the system on the stable limit cycle with respect to the stable manifold of the saddle focus (Jelić
et al., 2008, 2009; Marković et al., 2011a). The empirical observation that the same stimulus does not
always introduce the same response of the investigated system is frequently encountered. It is often not
recognized and therefore disregarded and treated as an experimental error or attributed as noise.

The model predicts that the effect of cholesterol perturbation on HPA axis activity depends also on
the diurnal phase of the HPA cycle (Fig. 7), in agreement with empirical observations that the HPA
axis dynamics is more sensitive to perturbations during the rest-phase, i.e. at night, than during the
day (Lucassen et al., 2013; Morin et al., 2003). Again, this is a natural consequence of the presence
of a supercritical Andronov–Hopf bifurcation and the coupling of ultradian and circadian oscillations.
In humans, the amplitude of small limit cycle ultradian oscillations of HPA axis hormones is smaller
during the night than during the day (Fig. 4(c)), which means that the ‘distance’ from the limit cycle
to the stable manifold of the saddle focus is ‘shorter’. Hence, from a dynamical systems theory point
of view, humans are more resilient to perturbations during daylight, which is the active phase of the
day, than during the night. Such circadian features of the HPA axis and other systems (e.g. immune
system) can be exploited in chronopharmacology (Ohdo, 2010), showing, e.g. that glucocorticoid drugs
had more beneficial effects for rheumatoid arthritis patients when administered at night than at the more
common time in the morning (Arvidson et al., 1994).

Numerical simulations also show that there is a ‘turning’ point — for cholesterol concentrations
that are smaller than a certain value acute perturbations will lead to reduction in the amplitude of ultra-
dian oscillations of cortisol, whilst larger perturbations will lead to an increase (Fig. 7). Mathematically,
this critical value reflects the special ‘geometry’ of the supercritical Andronov–Hopf bifurcation and
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Fig. 8. Response of the HPA system to stochastic acute perturbations with cholesterol. (a)–(c) Time series showing the effect
of stochastic perturbations of cholesterol levels (a1–c1) on the HPA axis activity (a2–c2). The time and intensity of cholesterol
perturbations were randomly selected as follows. The first perturbation was applied at 07:00 o’clock in the morning, the intensity
of cholesterol perturbation was randomly selected to be 0 � [CHOL]p �0.25 × 10−3 M, and the interval between two consecutive
pulses was 0 � tp �3 h.

the ‘distance’ of the limit cycle from the stable manifold of the saddle node—perturbations that end
at or close to this manifold will result in the reduction of the oscillation amplitude. However, as the
perturbation intensity is increased, the system will end up in states that are further away from the stable
manifold, which eventually will result in an increase of the amplitude of the subsequent ultradian oscil-
lation and the limit cycle will no longer be approached from the ‘inside’ but rather from the ‘outside’
(see Fig. 3 in Jelić et al., 2009). Physiologically, this means that there is a ‘threshold’ inbuilt in the
regulatory mechanism, and that perturbations of small intensity will be efficiently dampened, whereas
large-intensity perturbations will trigger a cascade of well-orchestrated physiological changes and the
activation of the stress–response system, the so-called ‘fight-or-flight’ response.

Similar effects were also obtained in perturbations of the previous model with other dynamical vari-
ables of the system, such as CRH or cortisol (Jelić et al., 2009; Marković et al., 2011a). This indicates
that the observed behaviour does not reflect some special property of perturbations with cholesterol,
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but is rather an inherent property of the rhythmic HPA axis activity in the vicinity of the supercritical
Andronov–Hopf bifurcation.

3.4 Effect of repeating acute cholesterol stress on the HPA axis dynamics

To investigate the effect of repeating perturbations of cholesterol levels on the detailed dynamics of
the HPA axis activity, we applied random series of cholesterol pulses (Fig. 8(a1–c1)) during the course
of numerical integration of (1a–1e) and examined how these perturbations affect the dynamics of the
ultradian HPA axis activity (Fig. 8(a2–c2)).

As can be seen, different random series of cholesterol pulses (Fig. 8(a1–c1)) give rise to very dif-
ferent detailed dynamics of the ultradian HPA axis activity (Fig. 8(a2–c2)). These data show that even
though in this model ultradian oscillations of HPA axis hormones arise through a purely determinis-
tic mechanism, stochastic external perturbations may lead to the development of intricate dynamical
patterns of HPA axis activity, offering a possibility for an additional source of variations in cortisol
concentration profiles in one and the same individual from one day to another.

4. Conclusion

The simple, 5D model of cholesterol effects on HPA axis activity proposed here gives a succinct rep-
resentation of a complex dynamical network that integrates the functions of the nervous and endocrine
systems at the level of the whole organism. The model reproduces the diurnal and ultradian variations in
cholesterol and key HPA axis hormones levels in the peripheral blood circulation, reaching quantitative
agreement for all investigated species except for ACTH. The model also closely mimics the complex,
experimentally characterized effect of cholesterol on the HPA axis activity under normal physiology
and disease conditions.

Compared with preceding models of HPA axis activity from which it was derived (Jelić et al., 2005,
2008, 2009; Marković et al., 2011a,b), the current model shows an improved quantitative agreement
with experimentally measured levels of main HPA axis hormones (Table 2), and enables us to quanti-
tatively characterize the effects of cholesterol on HPA axis activity. At the same time, the new model
retains all characteristic features of the previous models of the HPA axis dynamics, showing that CRH,
cortisol and cholesterol, although of very different basal levels, perturb the HPA axis dynamics in a sim-
ilar way. Modelling also replicated empirical observations showing that the HPA axis is more sensitive
to perturbations during the rest-phase, when the amplitude of ultradian oscillations is smaller.

In this model, the complex regulation of HPA axis activity arises from the intrinsic nonlinearity
of the underlying biochemical interactions and the entanglement of investigated species via feedback
mechanisms, rather than from any stochastic or noisy input. Modelling shows that the underlying non-
linearity enables the HPA axis to quickly adjust its dynamics in response to the stochastically changing
environmental impact, and promptly restore its balance thereafter. Furthermore, modelling also shows
that changes in the dynamic regulation of HPA axis activity lead to reduced adaptive potential, which
may be a cause or consequence of disease conditions.

Results presented here compellingly show that mathematical modelling and numerical simulations
may be a useful tool for understanding how cholesterol levels impinge on the HPA axis dynamics.
This intricate relationship may be difficult to study experimentally with sufficiently high-temporal res-
olution — high frequency of probes sampling may induce stress in an individual, perturbing the HPA
axis dynamics and making it difficult to separate the investigated effects from those arising due to the
experimental analysis. In further applications, the presented model may be utilized for understanding of
how dynamic regulatory mechanisms that underlie the HPA axis function are compromised in a rising
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number of metabolic and psychiatric disorders associated with the HPA axis dysregulation, including
insulin resistance, diabetes type II, metabolic syndrome, eating disorders, posttraumatic stress disorder
and major depression. Additionally, the introduced model of the HPA axis may also be a useful tool for
designing in silico dynamic drug delivery strategies that are synchronized with the HPA axis rhythmicity
of an individual, bringing us closer to personalized pharmacotherapy of patients.

5. Computational Details

Numerical simulations were performed using the MATLAB ode15s solver that is based on the Gear
algorithm for integration of stiff differential equations (Gear, 1971). Absolute and relative tolerance
error values were 3 × 10−20 and 1 × 10−14, respectively. The model was integrated with stricter tol-
erances in order to minimize numerical artefacts. However, we have verified that the same dynam-
ical behaviour was observed using relative tolerance values of 1 × 10−9 and 3 × 10−6. Kinetic rate
constants (ki, i = 1–13) used in the numerical simulations are as given in Table 1, unless otherwise
specified. Whenever possible, the values of kinetic rate constants were the same as in our previ-
ous work (Jelić et al., 2005; Marković et al., 2011b). In reactions involving cholesterol, the kinetic
rate constants were selected in such a way that the reaction rates of new and corresponding old
reactions were adjusted to be about equal. In this way, dynamical properties of the HPA axis core
species were preserved, and remained largely unaltered by cholesterol introduction. At the same time,
cholesterol influence on the HPA axis activity could be also analysed. In all simulations involving
ultradian and circadian rhythms, parameters d1 and d2 in the circadian rhythm function D had the fol-
lowing values: d1 = 0.885 and d2 = 0.957. Initial conditions for integration of ODEs in all numerical
simulations were: [CHOL]0 = 3.00 × 10−3 mol dm−3, [CRH]0 = 1.00 × 10−12 mol dm−3, [ACTH]0 =
8.00 × 10−8 mol dm−3, [CORT]0 = 4.00 × 10−8 mol dm−3 and [ALDO]0 = 6.00 × 10−10 mol dm−3.

The orbit diagrams shown in Fig. 5(a, b) were constructed by simulating the HPA axis dynamics
for different values of cholesterol inflow. Dynamic states without ultradian oscillations are indicated
by solid dots, whereas open circles denote the minimum/maximum of ultradian oscillations. All values
correspond to an arbitrarily selected time-point, in this case noon (t = 12:00 o’clock).

To simulate the effect of acute perturbations by cholesterol (Figs 6–8), numerical integration of ODE
(1a–1e) was stopped at a specified time point, and new initial conditions for subsequent integration were
defined. For the new initial conditions, cholesterol concentration was changed for an indicated amount,
whereas concentrations of all other species retained the same values as before.
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Jelić, S., Čupić, Ž. & Kolar-Anić, Lj. (2008) Modelling of the hypothalamic–pituitary–adrenal system activity

based on the stoichiometric analysis. New Research on Neurosecretory Systems (E. Romano & S. De Luca
eds). New York: Nova Science Publishers, Inc., pp. 225–245.
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Appendix

For the purpose of further analysis, ODE (1a–1e) (main text) are rewritten in the following form:

d[CHOL]

dt
= v1 − (v5 + v6) − v9 (A.1a)

d[CRH]

dt
= v2 − (v4 + v10) (A.1b)

d[ACTH]

dt
= v4 − (v5 + v6) − v7 − v11 (A.1c)

d[CORT]

dt
= v5 + v7 − v8 − v12 (A.1d)

d[ALDO]

dt
= v3 + v6 − v8 − v13 (A.1e)

where vm are reaction rates of reaction steps Rm (m = 1–13) displayed in Table 1 (main text), that can
be expressed as functions of the related rate constants km and the concentrations of species taking part
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in particular reactions, respectively: v1 = k1, v2 = k2, v3 = k3, v4 = k4[CRH], v5 = k5[CHOL][ACTH],
v6 = k6[CHOL][ACTH], v7 = k7[ACTH][CORT]2, v8 = k8[ALDO][CORT]2, v9 = k9[CHOL], v10 =
k10[CRH], v11 = k11[ACTH], v12 = k12[CORT] and v13 = k13[ALDO].

To derive the instability criteria by SNA, the temporal evolution of the investigated system described
by ODE (A.1a–A.1e) is more suitably represented in the matrix form:

dx

dt
= Jx, (A.2)

where x is the concentration vector whose elements [Xn] are concentrations of n = 1, 2, . . . , 5 inter-
mediary chemical species of the model (cholesterol (CHOL), CRH, ACTH, cortisol (CORT) and
aldosterone (ALDO)), respectively: [X1] = [CHOL], [X2] = [CRH], [X3] = [ACTH], [X4] = [CORT],
[X5] = [ALDO]; v is a reaction rate vector consisting of 13 reaction rates vm of reactions (m = 1–13).
The stoichiometric matrix S is an operator whose elements are stoichiometric coefficients, Sn,m, defined
as Sn,m = sD

n,m − sL
n,m where, sL

n,m and sD
n,m, represent stoichiometric coefficients of the model’s intermedi-

ary chemical species cholesterol CHOL, CRH, ACTH, CORT and ALDO on the left (L) and right (D)
sides of the chemical equation for Rm (m = 1, 2, . . . , 13), respectively (see Table 1, main text). Thus, the
stoichiometric matrix S is given by

S =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 −1 −1 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 1 −1 −1 −1 0 0 0 −1 0 0
0 0 0 0 1 0 1 −1 0 0 0 −1 0
0 0 1 0 0 1 0 −1 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ (A.3)

The first step in SNA analysis is to detect steady-state reaction pathways in the model (R1–
R13) that are inherently coupled through stoichiometric constraints. In SNA terminology, these ele-
mentary reaction pathways are known as extreme currents Ei and represent non-redundant sub-
networks of the investigated system. They are identified by solving the expression for the steady-state
condition:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1

dt
dx2

dt
dx3

dt
dx4

dt
dx5

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 −1 −1 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 1 −1 −1 −1 0 0 0 −1 0 0
0 0 0 0 1 0 1 −1 0 0 0 −1 0
0 0 1 0 0 1 0 −1 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

v5

v6

v7

v9

v10

v11

v12

v13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ss

=

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ .

(A.4)
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By solving (A.4) for the steady-state condition, the extreme current matrix E is obtained:

E =

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 0 0 2 1 1
1 0 1 1 1 0 1 1 2 1 2
1 0 0 0 0 1 1 0 0 0 0
1 0 0 1 1 0 1 1 2 1 2
1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0 0 1
1 0 0 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13

. (A.5)

The total number of extreme currents found in this model is 11. Each of the columns Ei (i =
1, . . . , 11) actually represents a reaction pathway that can be found in the steady state. For exam-
ple, E6 is the pathway comprising reactions (R3) + (R13), E9 is a reaction pathway of reactions
2(R1) + 2(R2) + 2(R4) + (R5) + (R6) + (R8) and so on.

The contribution of the extreme current Ei to a reaction rate at a steady state is designated as a
current rate, ji. Current rates ji make the components of the corresponding vector j. Therefore, using
the matrix E, reaction rates at the steady state can be expressed as linear combinations of the extreme
current rates (Clarke, 1980, 1988; Čupić et al., 2011), in accordance with the equation vss = Ej, where
vss is a vector of reaction rates at the steady state. Since reaction rates depend on the corresponding
rate constants and the concentrations of chemical species, correlations between classic chemical kinetic
parameters and the parameters of the SNA is are attained. These correlations can be derived by replac-
ing A.5 in vss = Ej, yielding:

v1,ss = k1 = j1 + j2 + j5 + j6 + 2j9 + j10 + j11 (A.6a)

v2,ss = k2 = j1 + j3 + j4 + j5 + j7 + j8 + 2j9 + j10 + 2j11 (A.6b)

v3,ss = k3 = j1 + j6 + j7 (A.6c)

v4,ss = k4[CRH]ss = j1 + j4 + j5 + j7 + j8 + 2j9 + j10 + 2j11 (A.6d)

v5,ss = k5[CHOL]ss[ACTH]ss = j1 + j5 + j9 (A.6e)

v6,ss = k6[CHOL]ss[ACTH]ss = j9 + j10 + j11 (A.6f)

v7,ss = k7[ACTH]ss[CORT]2
ss = j7 + j8 + j11 (A.6g)

v8,ss = k8[ALDO]ss[CORT]2
ss = j1 + j7 + j9 + j11 (A.6h)

v9,ss = k9[CHOL]ss = j2 (A.6i)
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v10,ss = k10[CRH]ss = j3 (A.6j)

v11,ss = k11[ACTH]ss = j4 (A.6k)

v12,ss = k12[CORT]ss = j5 + j8 (A.6l)

v13,ss = k13[ALDO]ss = j6 + j10. (A.6m)

From (A.6a–A.6m), five independent linear relations given in the main text as (2a–2e) were established.
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