
FACTA UNIVERSITATIS  

Series: Electronics and Energetics Vol. 27, No 2, June 2014, pp. 183 - 203 

DOI: 10.2298/FUEE1402183J 

PLASMONIC ENHANCEMENT OF LIGHT TRAPPING 

IN PHOTODETECTORS

  

Zoran Jakšić
1
, Marko Obradov

1
, Slobodan Vuković

1,2
, Milivoj Belić

2 

1
Center of Microelectronic Technologies, Institute of Chemistry, Technology and 

Metallurgy, University of Belgrade, Serbia 
2
Science Program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar 

Abstract. We consider the possibility to use plasmonics to enhance light trapping in 

such semiconductor detectors as solar cells and infrared detectors for night vision. 

Plasmonic structures can transform propagating electromagnetic waves into evanescent 

waves with the local density of states vastly increased within subwavelength volumes 

compared to the free space, thus surpassing the conventional methods for photon 

management. We show how one may utilize plasmonic nanoparticles both to squeeze 

the optical field into the active region and to increase the optical path by Mie scattering, 

apply ordered plasmonic nanocomposites (subwavelength plasmonic crystals or 

plasmonic metamaterials), or design nanoantennas to maximize absorption within the 

detector. We show that many approaches used for solar cells can be also utilized in 

infrared range if different redshifting strategies are applied. 
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1. INTRODUCTION 

An important requirement posed in photodetector design is to maximize the useful 

photon flux for a given physical thickness of active region of the device [1]. Probably the 

most important type of such devices nowadays are solar cells [2-4]. They are basically 

photovoltaic detectors where an optical signal (radiation of the sun) is converted to 

voltage and thus to useful energy. Since materials for solar cells are expensive, it is of 

interest to make their active region as thin as possible. Another important class of the 

devices are infrared (IR) detectors [5] used in e.g. remote sensing, night vision, etc. Since 

they are intended for larger wavelengths – typically they operate within the atmospheric 

windows at (3-5) m or (8-12) m – their thickness is usually relatively small compared 

to the operating wavelength. 
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Actually both the thickness of solar cells and night vision devices may be in 

subwavelength domain, i.e. smaller than the operating wavelength. A requirement posed 

to the designers in both situations is how to maximize optical trapping within such thin 

active regions. 

An important aspect of decreasing the thickness in the case of general semiconductor 

detectors is that it is followed by an increase of the response speed. Thus the basic task in 

the design of such detectors is to maintain or even improve quantum efficiency in the 

operating wavelength range while decreasing the thickness as much as possible. 

The engineering methods dedicated to maximization of the available optical flux in 

photodetectors are termed the photon management or the light management [6]. Several 

general strategies are available for this purpose [7], as shown in Fig. 1.  

 

Fig. 1 Strategies for maximization of optical flux in photodetector 

First, one may perform external light concentration and collect optical energy from an 

incident area larger than the physical dimensions of the detector active region itself (photon 

collector). A typical example of this approach would be the use of concentrating lenses or 

reflectors that gather irradiation from the so-called optical area and focus it onto the electric 

area of the detector. Non-imaging collectors can be used to that purpose [8-11]. 

After the signal has reached the active area of the detector, various antireflection 

coatings and structures can be used to decrease the reflected component of the incident 

radiation and to allow as large part of it as possible to enter the active region itself [12]. 

All of these structures basically match the impedance of the free space/detector 

environment to that of the detector material. 

Once inside the detector, one can increase the optical path through the active region, 

which can be done by backside reflectors redirecting radiation back to the active region, 

or by various scattering structures at the front and at the back side of the device which 

change the path of the beam to make it longer and make use of total internal reflection to 

return the beam to the active region. It is also possible to utilize resonant structures 

(resonant cavity enhancement) [13], thus obtaining a narrow-bandwidth response, or to 

incorporate photodetector in a photonic crystal cavity [14, 15]. 

Another important approach to detector enhancement after the beam has entered the 

active region is to perform internal optical concentration (spatial localization), i.e. to 
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fabricate structures that will perform squeezing of the optical space from a larger volume to 

a smaller one, thus increasing the local density of states of optical energy within the latter. 

The last two approaches, i.e. optical path increase and spatial localization belong to 

the light trapping schemes. The advent of nanostructuring technologies brought an 

impetus to this field. Various building blocks with nanometer dimensions have been 

proposed for e.g. solar cell energy harvesting improvement, including nanoparticles, 

nanowires, different core-shell geometries, colloidal quantum dots, etc. [16, 17]. 

Recently the use of plasmonics appeared as a novel approach to nanotechnological 

improvement of photodetector light trapping [18-23]. 

Basically, plasmonics represents the use of coupled electron oscillations and surface-

bound electromagnetic waves called surface plasmons polaritons (SPP). This is achieved 

through utilization of metal-dielectric nanocomposites that can be designed to obtain 

almost any desired optical properties and thus almost complete control over electromagnetic 

propagation in and around such structures [24]. Even the values of optical parameters not 

ordinarily met in nature can be obtained, like near-zero or even negative values of refractive 

index [25, 26]. Such ability to engineer optical parameters at will brought to almost 

complete control over the propagation of electromagnetic waves and resulted in the 

appearance of transformation optics [27-29], where one optical space is transformed into 

another. One of the obvious application of plasmonics has been to “squeeze” the optical 

space to a much smaller volume than that of the free space. In this way high localizations 

of the electromagnetic field became possible, i.e. local densities of electromagnetic states 

much larger than those in the free space. 

In this paper we consider the use of plasmonics in light trapping in (ultra)thin 

photodetectors including solar cells and night vision detectors. After considering the 

fundamental limits to photon management in detectors from the point of view of subwavelength 

structures, we investigate the basic schemes for light trapping using plasmonics. We analyze the 

applicability of plasmonic nanoparticles both for field scattering and localization within the 

detector, the use of subwavelength plasmonic crystals and the possibility to redshift the 

device response utilizing the designer plasmons. We consider the utilization of dedicated 

optical antennas (nanoantennas) for detector enhancement. At the end we show how some 

of the schemes utilized for visible and near infrared radiation can be applied for night 

vision detectors through the application of different redshifting strategies. 

2. FUNDAMENTAL LIMITS TO LIGHT MANAGEMENT IN DETECTORS 

We consider a general case of a photodetector as a device that converts optical energy 

into another form of energy. Most often this energy is electrical signal, although other 

forms may be used like thermal [30], motion (e.g. cantilever-based detectors) [31], optical 

signal at another frequency (up- or down-converted) [32, 33] etc. Basically, different light 

management approaches are intended to improve absorption of light in the detector and 

ensure a higher degree of this conversion. Obviously, the efficiency of any conversion is 

limited by basic physical laws. A question is posed what are the fundamental limits of 

photodetector enhancement through light management. 
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Fig. 2 The structure of the active region of a detector with corrugated surface and ideal 

backside reflector 

A detector system is presented in Fig. 2. A background optical flux is incident to the 

active area of a photodetector with a thickness d. Both in the case of solar cells and night 

vision photodetectors the optical flux is blackbody radiation, described by the Planck’s 

law. In a general case the detector material may incorporate nanostructuring that could 

localize optical field and create hotspots with high density of states. A perfect mirror is 

placed at the rear side of the device – i.e. it is assumed that the incident light is unidirectional, 

while the internal radiation is bidirectional. 

The detector surface is corrugated in order to increase the optical path through the 

detector. The corrugation may be random or ordered, but in both cases its basic purpose is 

to change the direction of light incident upon the active surface and to make use of total 

internal reflection to ensure repeated passing of the beams through the active region. 

Light can escape if the direction of the internal beam falls within the escape cone, for 

which according to Snell’s law sin cr = 1/n (cr is the critical angle of total reflection, n is 

the refractive index of the active region).

We first consider the case limited by geometrical optics, which has been established 

by Yablonovitch [34-37]. In literature it is variably denoted as the conventional limit, the 

ergodic light trapping limit, the ray-optics limit and the Lambertian limit. It is assumed 

that the detector active material can be described by an effective absorption coefficient  

isotropic throughout the device and that the detector thickness is much larger than the 

operating wavelength in free space (d >> /2n), so that one considers a bulk process. The 

absorbance within the photodetector for a single pass across the structure (absorption 

without enhancement) is 

 ( ) 1 exp( ( ) ) )A d w d        , (1) 

i.e. the absorbance is equal to the optical thickness of a photodetector, which is defined as 

the d product. 

Since a bulk case is considered, it is further assumed that interference/diffraction 

effects can be neglected and that the intensity of light within the detector medium is in 

equilibrium with external blackbody radiation. The density of states within the medium is 

proportional to n
2
. The next assumptions are that the equipartition theorem is valid (the 
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internal occupation of states is equal to the external one, the internal states are ergodic) 

and that the surface corrugation performs a full randomization of the incident signal over 

space. This is not always satisfied, but the assumption holds in a vast majority of cases. A 

sufficient condition for randomization of light by multiply scattering corrugated surfaces 

is that these surfaces upon averaging behave as Lambertian. The internal distribution of 

the light within the medium is then isotropic.  

According to the statistical ray optics approach [34] the relation between internal and 

external intensity of light is 

 )(),(2),( 2
int  extIxnxI  . (2) 

The same result is also obtained according to the principle of detailed balancing of the 

light [38] applied between the light incident to a small surface element of the detector 

active area and escaping from that same element through the loss cone and by applying 

the brightness or radiance theorem (e. g. [39]) stating that the spectral radiance of light 

cannot be increased by passive optical devices (based on the principle of reversibility). 

To determine the enhancement of absorption, one has to consider the loss of light due to 

various mechanisms. According to Yablonovitch [34, 35] there are three such mechanisms: 

the escape of light through the light cone, the losses due to imperfect reflection at the 

surfaces and the absorption in bulk. The absorbance of a photon is the ratio of the rate at 

which absorption occurs and the sum of the absorption and the photon loss through the 

escape cone. For the volume absorption in the limiting case when d << 1 and taking 

account the angle of the loss cone , this expression is
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so that the absorption enhancement limit in the bulk case with internal randomization 

becomes 4n
2
. For = /2 this assumes the more often used simple form
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The next case we consider are the devices with plasmonic localization for the enhancement 

of absorption. In this case many of the above assumptions introduced for ergodic limit are not 

valid. The crucial points are that the light distribution now is not isotropic (and actually the 

volumes with a strongly enhanced density of electromagnetic states may be deeply 

subwavelength) and the thickness of the detector is usually subwavelength. 

A number of treatises is dedicated to the situations in which the ray optics limit is 

exceeded and optical modes are confined at subwavelength scale [40-42]. However, until 

now no generally valid solution has been given for the extension of the ray optics limit [43]. 
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3. PLASMONICS FOR LIGHT TRAPPING 

Surface plasmons polaritons (SPP) are oscillations of free electrons in conductive 

material near an interface with dielectric coherently coupled with electromagnetic 

radiation at the interface. The conductive material can be characterized by negative value 

of dielectric permittivity, while that in dielectric is positive. Typically the conductive 

material is metal (most often used being gold and silver, although other metals are used 

like chromium, copper, various alloys, alkali metals, etc.), however other materials are 

used too, for instance transparent conductive oxides like indium tin oxide, zinc oxide, tin 

oxide, etc. (in near infrared), different semiconductors like silicon carbide, gallium arsenide 

(mid infrared), intermetallics, graphene and some other materials, all being denoted as 

plasmonic materials [44-46]. The SPP is related with electromagnetic waves that are 

confined to the interface between positive and negative permittivity materials and are 

evanescent in perpendicular direction, i.e. they exponentially decay away from the interface. 

SPPs can be propagating along the interface, or they can be nonpropagating, i.e. spatially 

confined to e.g. a metal nanoparticle (localized surface plasmons polaritons). Generally, the 

rapidly expanding field of research and application of SPP-based phenomena is denoted as 

plasmonics [24, 47-49]. 

The field of plasmonics is dedicated to the use of SPPs in a similar way electrons are 

used in electronics. This is achieved via engineering of nano-composites that combine 

materials with positive and with negative values of dielectric permittivity in a certain 

frequency range. Plasmonic nanocomposites can be one-dimensional (1D) like planar 

metal-dielectric superlattices, two-dimensional (2D) like cylindrical metallic nanowires, 

or three-dimensional (3D) like spherical metallic nanoparticles embedded in dielectrics. 

These structures can be periodic, quasiperiodic [50], aperiodic [51] or fully random [52]. 

The building blocks of these functions themselves may have different shapes, from simple 

to complex and from regular to irregular [53]. 

Even in their simplest version, SPPs at the plane boundary between two semi-infinite 

media with opposite signs of dielectric permittivity are inhomogeneous electromagnetic 

waves (i.e. not plane waves) that propagate along the interface, and whose energy is 

concentrated in the narrow region near the boundary plane. This is possible only in a 

frequency range where the absolute value of the negative dielectric permittivity on one 

side is greater than the positive value on the other side of the interface.  SPPs are strongly 

TM (transverse-magnetic) polarized, and because of that they are called polaritons. In 

other words, magnetic field and wavevector of the SPP lay in the plane of interface, while 

electric field of the wave has both perpendicular and parallel to the wavevector components. 

Therefore, SPPs are neither longitudinal nor transversal waves. It should be noted that TE 

polarized component of electromagnetic field cannot satisfy the Maxwell equations with 

standard boundary conditions, in the form of surface wave. 

Plasmonic nanocomposites with two or more metal-dielectric interfaces within distances 

less than, or comparable to the plasmonic material skin depth (~25 nm for Au or Ag) 

produce strong coupling of neighbouring SPPs, and highly pronounced nonlocal effects. A 

plethora of new modes and possible novel effects may appear in such structures [54, 55]. 

Sophisticated theoretical and numerical methods are necessary in order to achieve desired 

nanocomposite design levels.  
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An important disadvantage of SPPs is their resonant nature, which causes a narrow 

bandwidth of operation. Another one is their large wave damping due to collisions of free 

carriers in the epsilon-negative material, which leads to shorter SPPs lifetimes and/or 

propagation lengths and high absorption of incident radiation.  

The relative dielectric permittivity of plasmonic materials is negative below plasma 

frequency, and its dispersion is well-described by electron resonance model of Drude 

[56], also denoted as Drude-Sommerfeld model 
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where p is the plasma frequency,  denotes damping factor describing losses (i.e. defines 

the imaginary part of the complex dielectric permittivity), while  is the asymptotic 

relative dielectric permittivity.

The plasma frequency is determined by the properties of free carriers as 
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where ne is electron concentration, e is the free electron charge (1.6·10
–19

 C), 0 is the free 

space (vacuum) permittivity (8.854·10
–12

 F/m), and m
*
 is the electron effective mass.  

The damping factor can be calculated from the material scattering data as 
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where  is mobility of free carriers. 

If interband transitions from the valence to the conduction bands exist, dielectric 

permittivity is described by the Lorentz model [57] 
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where  is the resonant frequency of electron oscillator, while the apostrophe in plasma 

frequency ’p and damping factor ’ denotes that these values are related with the 

concentration of bound electrons taking part in the interband transitions. 

Since one is able to tailor a plasmonic nanostructure, this means that dispersion relations 

could be designed within it, even enabling the optical behavior that surpasses that of natural 

materials. The structures thus obtained are known as plasmonic metamaterials [25]. In that 

case one can obtain modes with superluminal group velocities (“fast light”), near-zero 

(“slow light”) or even negative (“left-handed light,” propagating in the direction opposite 

to that of the phase velocity) [58]. The possibility to obtain an arbitrary frequency 

dispersion gives a possibility to convert propagating far field modes into spatially 

localized near-field modes, thus obtaining strongly increased density of states. The same 

energy is compacted into a much smaller space, thus ensuring much higher energy 

densities. This ensures highly enhanced interaction of optical radiation with photodetector 

material. This kind of engineering of optical absorption ensures its maximization in the 
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active area, leading to vastly increased photodetector response and sensitivity compared 

to other light trapping schemes. 

A drawback of the use of plasmonics in photodetection are large absorption losses in 

metal, which result in a large part of energy being converted to heat instead of the useful 

signal. This topic is a field of active investigation, and various schemes are used to avoid 

it [59]. One of the approaches is the use of alternative plasmonic materials, like for 

instance transparent conductive oxides like tin oxide, indium tin oxide or zinc oxide [60] 

which are routinely used in solar cells because of their transparency at visible wavelengths. 

Another such material for solar cell enhancement is graphene [45]. 

The applicability of plasmonics for photodetector enhancement has been recognized very 

early, in the period 1970-1980-ties, and actually some of the first proposed applications of 

surface plasmons polaritons were in photodetection [61, 62]. 

A large body of papers has been published on various methods of plasmonic enhancement 

in solar cells [19, 59]. Surface plasmon polariton-mediated light trapping schemes may be 

roughly divided into the following groups according to the particular mechanism used (and 

bearing in mind that a single trapping scheme may include more than one of these):  

 Enhanced Mie scattering on plasmonic nanoparticles or nanovoids through 

plasmonic enlargement of effective cross-section [63].  

 Coupling into guided modes (which may be propagating or SPP modes) [19] 

 Field localization and generation of hotspots near the surface of plasmonic 

material (using embedded nanoparticles, nanoantennas, metamaterials) [20] 

 Use of plasmon-based singular optics (optical vortices, i.e. circular flow of field in 

a corkscrew fashion around phase singularities in the optical near field around 

plasmonic nanostructures) [59] 

 Use of metamaterial-based transformation optics to map the optical space into a 

desired shape and with an increased density of states (optical superconcentrators 

and superabsorbers, optical black holes) [64] 

 Plasmon-enhanced up-conversion media (reverse of luminescent materials used for 

down-conversion) [65] 

The plasmonic structures to be used for one or more of the above purposes include the 

following: 

 Nanoparticles and nanovoids – used as scatterers and as nanoantennas for field 

coupling and localization. May be arranged in an ordered fashion (pattern) or 

disordered) 

 Diffractive structures (gratings, lattices) – used for field coupling into guided 

modes; may be ordered or disordered. 

 Subwavelength plasmonic crystals (SPC) – used for field coupling and 

localization. May be periodic [66] or quasiperiodic [67] in 1D, 2D or 3D.  

Plasmonic structures may be used as resonant enhancers, in which case they offer a 

narrow-bandwidth operation, or may be nonresonant, with a wide-bandwidth operation [68]. 

4. PLASMONIC NANOPARTICLES AS MIE SCATTERERS 

The scattering cross-section of a plasmonic nanoparticle is greatly enhanced due to 

plasma resonance compared to non-plasmonic ones. The effective cross-section may be 



 Plasmonic Enhancement of Light Trapping in Photodetectors 191 

an order of magnitude larger than the geometrical cross-section. Thus a 10% surface 

coverage would suffice for practically 100% efficiency of conversion from incident 

propagating modes into surface plasmons polaritons. 
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concentrators) 

Active 
region 

Substrate 

 

Fig. 3 Light trapping utilizing plasmonic nanoparticles stochastically placed  

on the detector surface 
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Fig. 4 Geometries for plasmonic scatterers for light trapping within photodetector. 

a) nanoparticles embedded in top dielectric; b) nanoparticles on top of the active region; 

nanoparticles embedded within the active region; d) nanoparticles on the back side 

Usually the conventional Mie theory is utilized for the calculation of effective cross-

sections for absorption and scattering on nanoparticles [69]. Mie theory is valid for 

noninteracting nanoparticles (i.e. those where the interparticle distance is large enough to 

prevent their electromagnetic coupling). In nanoparticles interacting through near-field 

coupling or far-field dipole interactions various additional phenomena appear like 

splitting of plasmon resonances and their shifting. 
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The simplest case is scattering on a spherical plasmonic nanoparticle that can be considered 

as an electric dipole. Its scattering cross-section at a wavelength  can be calculated as [70, 71] 
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Here np is the complex and wavelength-dispersive relative dielectric permittivity of the 

plasmonic nanoparticles, d is the permittivity of the surrounding dielectric medium and V is the 

geometrical volume of the nanoparticle. The plasmon resonance and the maximum scattering 

cross-section are achieved at np = –2 d. 

The absorption cross-section is determined as 
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Elongated ellipse may be taken as a generalization of the case of sphere and corresponds 

to a single wire nanorod antenna. This structure is actually the basic building block, out of 

which more complex forms are built. Again the Mie theory is applicable to this case, in a 

somewhat modified form. The dipole moment induced by an external field in an elongated 

ellipsoid is 
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and its resonant frequency  
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where r is short radius of the ellipsoid, and R/2 its longer radius. 

In the most general case, the shapes of the nanoparticles widely vary and may assume 

different complex forms (e.g. various convex and concave polyhedra, including stellated and 

other forms [72]. This reflects strongly in their plasmonic response [19], since in principle 

sharper forms will cause larger field localizations. Mie theory has been generalized to some of 

the more complex forms, but in the most general case the response is calculated numerically. 

5. DIFFRACTIVE PLASMONIC COUPLERS 

An obvious approach to light trapping using plasmonics is to integrate the detector 

structure with a diffractive plasmonic structure (diffractive optical element, DOE) [73] 

and generally with a corrugated metal layer to act as a coupler with propagating modes. 

The simplest DOE is the conventional diffractive grating.  

A parameter of a general diffractive optical element (DOE) that determines the degree of 

coupling with propagating modes is its diffraction efficiency. The diffraction efficiency is 

dependent on geometrical and material parameters of the plasmonic DOE, i.e. the complex 
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refractive index of the plasmonic material (for instance, transparent conductive oxides will 

generally have lower losses and longer resonant wavelengths than metals), the dimensions of 

the DOE features (in the case of plasmonic diffractive gratings the parameters of influence will 

be the lattice constant (the grating element spacing), the shape and height of the grating ridges. 

Thus its value can be tailored and optimized by a proper choice of the quoted parameters. 

The guided modes into which propagating modes are coupled by a DOE can be 

propagating optical modes (the conventional waveguide modes) and surface plasmon polariton 

modes. In an ideal case for a photodetector, all propagating modes will be converted to 

plasmonic ones. 

Figure 5 shows two different geometries for incorporation of DOE into thin photodetectors: 

a) back-side DOE, b) top-side DOE. The configuration shown in Fig. 5a is more common of 

the two [74]. However, the second one (Fig. 5b can perform an additional function as light 

collector. 

 

a) 

diffractive patern 

b) 

AR/dielectric 

Active layer 

Buffer 

substrate 

 

Fig. 5 Two geometries for incorporation of plasmonic DOE into a photodetector. 

a) bottom DOE, b) top DOE 

Depending on the structure of the DOE coupler, the propagation lengths of the SPP 

modes may be shorter or longer [75]. Besides its function as a light trapping structure, a 

DOE can also serve as a light collector by its virtue of functioning as a non-imaging light 

concentrator [76]. In addition to that, a DOE may perform impedance matching between free 

space and photodetector material, thus behaving basically as a diffractive antireflection 

structure. For instance, 1D metallic gratings (i.e. metal surface with an array of parallel slits) 

have been proved to act as such impedance-matching structures [77]. This means that such 

grating exhibit wideband extraordinary transmission. Since this is a non-resonant 

phenomenon, it ensures a wide bandwidth and a broad range of incident angles. 

The diffractive structure may have a form of conventional diffractive grating with 

parallel ridges of metal, or may be more complex (e.g. a lattice/fishnet, etc.) In a most 

general case it will have a form of a holographic optical element with fully tailorable 

properties that can be computer generated [78]. 

Plasmonic DOE may function in narrow-bandwidth mode near resonance, but also as 

non-resonant elements with wide bandwidth. A built-in plasmonic DOE in photodetector 

may simultaneously perform its function as a coupler and an electromagnetic field 

concentrator, but it may be also built to perform as a plasmonic waveguide [79, 80]. 

6. SUBWAVELENGTH PLASMONIC CRYSTALS AND DESIGNER PLASMONS 

Further generalization of diffractive plasmonic structures is that to subwavelength 

plasmonic crystals (SPC) [81]. A SPC may be defined as a 1D, 2D or 3D plasmonic 
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structure with its period much smaller than the operating wavelength (a rule of thumb is 

that the periodicity is at least ten times smaller than the operating wavelength). Thus the 

details of the structure are not “seen” by the incident light and it behaves as an effective 

medium with its optical parameters dependent on its design, thus ensuring engineering of 

frequency dispersion of such materials. 

The number different possible kinds of SPC is virtually limitless. Plasmonic 

metamaterials may be regarded a special class of the SPC and are defined as the structures 

possessing electromagnetic properties that are not readily found in nature [25], the most 

often researched among such properties being the possibility to reach negative values of 

effective refractive index [82]. 

The SPC structures ensure light localization  and can be therefore straightforwardly 

utilized to enhance optical absorption in photodetectors. In addition to that, owing to a 

large number of possible modes in such structures [boba], it is possible to utilize them at 

the same time to match the impedance between the free space and the photodetector, 

effectively behaving as an antireflective diffraction structure. 

As an example of SPC for the enhancement of solar cells, Fan et al [83] fabricated an 

ordered 2D array or metal cubes (or rather cuboids) on semiconductor surface to improve 

light trapping.  

Among SPC structures within the context of photodetection, one of the more frequently 

encountered ones are 2D arrays of nanoapertures in opaque metal films. Such structures first 

drew attention for their ability to transmit light in spite of the dimensions of nanoapertues being 

much smaller than the operating wavelength and were denoted as extraordinary optical 

transmission (EOT) arrays [84]. This behavior is a consequence of resonant excitation of SPP 

at their surface that forces the passage of electromagnetic waves incident to the whole surface 

through the apertures. Since such behavior effectively corresponds to impedance matching 

between propagating waves and the perforated metal film, the EOT arrays thus act as efficient 

antireflective structures. However, there is another useful application of the EOT arrays in 

photodetection (and generally structured metal-dielectric surfaces) and it is based on the 

properties of the surface waves that propagate along them. 

 

detector 
active 
region 

Plasmon 
enhancement 

 

Fig. 6 Metallodielectric EOT structure introducing “designer” plasmons  

with structurally tunable plasma frequency 

Pendry et al [85] have shown that for a surface wave that propagates along a perforated 

metal film one is able to introduce an effective permittivity with a form 
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where hole is the permittivity of the material within the holes, a is the hole side length (in 

the case of square holes, as shown in Fig. 6) , and k0 is the wavevector in vacuum. The 

effective plasma frequency of such material is 

 

holehole

p
a

c




   (15) 

In other words, the effective dielectric permittivity of an EOT array has the form 

identical to that of plasmonic materials. Such surface waves that mimic SPP were denoted 

by Pendry the designer plasmons, and are also known as “spoof” plasmons. Their main 

advantage is that one is able to tune the effective plasma frequency by a proper choice of 

geometry and material parameters and thus to shift it at will. An obvious application of 

this approach was for infrared detectors and structures tuned to the range of 8-10 m have 

been reported [86]. 

A paragidm that appeared in the wake of metamaterials is the transformation optics [27-

29, 87], the use of conformal mapping to transform one optical space into another, thus 

ensuring bending of light at will and tailoring of the density of states within a given volume. 

In a general state this is ensured through the use of gradient index metamaterials [88, 89]. 

Probably the best known example of transformation optics are the so-called cloaking devices 

[29, 90], but from the point of view of photodetection much more interesting concepts are 

met in superfocusing and superconcentrators [91], superabsorbers [92, 93] including optical 

black holes [94], superscatterers [95], etc . In their 2011 paper Aubry et al [64] proposed the 

use of transformation optics to ensure broadband light harvesting.

7. NANOANTENNAS FOR PHOTODETECTION ENHANCEMENT 

Nanoantenna or optical antenna [68, 96-98] is a plasmonic structure redirecting 

propagating waves into evanescent field (and vice versa), where propagating and spatially 

localized modes are linked in a highly efficient manner. The amount of localization itself 

can be tailored by the proper design of the nanoantenna and can be deeply subwavelength. 

Thus interaction  with photodetector active region can be vastly enhanced. 

Nanoantennas are isolated structures, i.e. they are not connected to a feeding circuitry 

like the conventional antennas. With this in mind, a simple spherical nanoparticle may be 

regarded as the most basic nanoantenna. Its scattering properties are shortly presented in 

Section 4 of this paper. 

Various types of nanoantennas were experimentally produced and presented in 

literature. Fig. 7 shows some of the basic geometries, including the most basic type, the 

nanosphere. If two such spheres are brought together, they form a nanodimer with a 

coupling gap with a subwavelength width between them (denoted as the feed gap). A field 

hotspot appears in the feed gap, where localization is deeply subwavelength and field 

enhancement is very strong. In this manner larger field localizations are obtained than 

those using single structures.  
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Another generalization is the introduction of elongated ellipsoid (also described in 

Section 4) that can be within this context described as dipole nanorod antenna, which is 

one of the most basic nanoantenna geometries. If two nanorods acting as linear dipoles 

are aligned and brought together to a subwavelength distance, ensuring an end-to-end 

coupling, they form a two-wire nanoantenna [68]. This is another basic type of optical 

antenna. It can be further generalized by introducing two additional dipoles perpendicularly 

to the first ones, all foud having a joint feed gap (the cross-antenna). 

Nanoparticles can be ordered in an array (nanoparticle chain) to form an optical 

antenna [99] effectively behaving as linear nanorod antenna. 

Another prototypical structure is the bowtie nanoantenna [100], consisting of two 

triangular shapes aligned along their axes and forming the feed gap with their tips. Such 

geometry ensures a broader bandwidth together with large field localizations in the feed gap. 

A diabolo-type nanoantenna has been proposed in [101]. An optical Yagi-Uda 

nanoantenna can be fabricated by placing a resonant nanorod antenna between a reflector 

nanorod and a group of director nanorods [102]. Similar to such antennas used in 

radiofrequent domain, a good directivity is obtained. 

More exotic shapes include spiral nanoantennas [103] and those with fractal 

geometries [104]. A plethora of other shapes can be used. Different geometries include 

e.g. the use of split rings, various crescent shapes. An important group are nanoantennas 

making use of the Babinet principle (a metal shape surrounded by dielectric and a 

dielectric-filled hole in metal with identical shape and size have identical diffraction 

patterns). Thus bow-tie holes in metal substrates are used, two holes as a Babinet 

equivalent of a nano-dimer, arrays of nanoholes, crossed arrays of nanoholes, etc. [105].   

 

Fig. 7 Some different types of experimental plasmonic nanoantennas 
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The obvious way to use nanoantennas in photodetection is for coupling between 

propagating and localized modes and for field localization, especially through the use of 

hotspots within the feed gaps. A large number of works has been dedicated to the use of 

optical nanoantennas for photodetector enhancement [59, 68, 97, 106] 

The applicability of optical antennas for photodetection has been recognized very 

early [61]. Today it is still one of the foci of interest in the application of optical antennas 

[59, 106]. 

One of the alternative approaches is to use a Schottky metal-semiconductor junction where 

the optical antenna forms the metal mart of the metal-dielectric contact at the semiconductor 

detector surface [107]. Photoexcitation generates hot electron-hole pairs by plasmon decay and 

the electrons are injected over the Schottky barrier, thus directly generating photocurrent. A 

problem with this approach is a low efficiency when using hot electrons. 

9. REDSHIFTING METHODS FOR NANOPARTICLE-BASED PLASMON-ASSISTED INFRARED 

DETECTION 

Most of the approaches described in this paper are applicable in different part of the 

spectrum (subwavelength plasmon crystals/designer plasmon structures and optical 

antennas). However, the use of metal nanoparticles as Mie scatterers is limited to 

frequencies near the surface plasmon resonance, which is for usual plasmonic materials 

(good metals) in ultraviolet or visible part of the spectrum. This makes them unsuitable 

for night vision devices and infrared detection. 

In this Section we consider possible strategies to ensure the usability of plasmonic 

particles in the IR range [108]. The main point is that one needs to shift their resonance 

frequency toward longer wavelength, i.e. to perform a redshift of the characteristics. One 

obvious approach is to use materials with lower plasma frequency. It is known that plasma 

frequency of transparent conductive oxides is redshifted compared to metals and can be 

further shifted through proper doping and fabrication techniques [109-111]. Another 

pathway toward redshifting is the immersion of plasmonic nanoparticles into high 

refractive index material [70], either by incorporating it into a dielectric film at the 

detector surface or utilizing core-shell particles with external dielectric layer. Finally, one 

of the possible methods is the adjustment of interparticle spacing. 

Fig. 8 shows the calculated scattering cross section for a spherical dipole indium tin 

oxide nanoparticle with a radius of 60 nm. The assumed doping concentration was 

1.2·10
21

 cm
–3

 which together with an effective mass of m* = 0.4 m0  furnishes a plasma 

frequency of 4.8·10
14

 Hz. The nanoparticle is placed at the top of the active surface of the 

detector and is embedded in dielectric, a layout similar to that shown in Fig 4b. Finite 

element method was utilized for simulation; no approximations were used. The plasmon 

resonance redshift described by maxima in scattering cross-section dispersion relations 

shown in Figure 8 is caused by the increase in the embedding dielectric permittivity. 

Figure 9 shows the radial distribution of the scattered electric field, presenting forward 

and back scattering. Spreading of the forward scattering region with the increase of the 

permittivity of the dielectric layer is readily seen Figure 9.a as well for larger operating 

wavelengths Figure 9.b. Finally, Fig. 10 shows the electric field x-axis component 

(parallel to the incident light polarization) around the spherical nanoparticle at the surface 

of the detector for a permittivity of the embedding layer of 8. 
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Fig. 8 Spectral dependence of scattering Sscat cross-section for an embedded ITO particle, 

r=60 nm, p=625 nm 
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Fig. 9 Radial distribution of electric field around an ITO nanoparticle obtained by  finite 

element modeling; r=60 nm, p=625 nm. Light is incident from top.  

a) Scattering curves obtained for dielectric permittivity values 8, 10 and 12 for an 

operating wavelength of 3 m. b) Scattering curves for operating wavelengths of 

2, 3 and 4 m. Permittivity of the dielectric layer is 12
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Fig. 10 Field enhancement around ITO nanoparticle for infrared detector enhancement, 

calculated by FEM simulation. Light is incident from right. r=60 nm, p=625 nm, 

 =2.6 m, permittivity of the dielectric layer is 8 

10. CONCLUSION 

A broad overview is given of the currently available possibilities to use plasmonics for 

the enhancement of different classes of photodetectors, stressing solar cells and night 

vision devices. The consideration is based on the point of view of non-imaging 

photodetection devices (single detector elements) intended for detection of a broadband 

spectrum that can be represented as blackbody radiation. A classification of the 

approaches proposed until now is given, including some original results by the authors. 

The list of the available methods and approaches must be far from finished, since both 

plasmonics and solar cells fields of research are rapidly expanding, and new ideas and 

approaches appear almost every day. 
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