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Integer quantum Hall effect in gapped single-layer graphene
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Analytical expressions for the Hall conductivity o, and the longitudinal resistivity p,, are derived in gapped,
single-layer graphene using linear response theory. The gap 2A, described by a mass term, is induced by a
substrate made of hexagonal boron nitride (h-BN) and produces two levels at =A. It is shown that oy, has the
same form as for a graphene sample supported by a common substrate without a mass term. The differences are a
shift in the energy spectrum, which is not symmetric with respect to the Dirac point for either valley due to the gap,
the absence of a zero-energy Landau level, and the nonequivalence of the K and K’ valleys. In addition, the dis-
persion of the energy levels, caused by electron scattering by impurities, modifies mostly plateaus due to the
levels at =A. It is shown that the resistivity p,, exhibits an oscillatory dependence on the electron concentration.
The main difference with the usual graphene samples, on SiO, substrates, occurs near zero concentration, as the

energy spectra differ mostly near the Dirac point.
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I. INTRODUCTION

There has been increased interest in graphene single layers
on substrate made of hexagonal boron nitride (h-BN).'~° This
substrate has its own advantages over SiO,, since it has a
smooth surface on the atomic scale and its lattice constant
is close to that of graphene. Also, it is relatively free of
dangling bonds and charge traps.! Furthermore, graphene
devices on h-BN substrates exhibit higher mobilities'-> and
reduced carrier inhomogeneities and roughness.! The novel
substrate induces a finite gap and brings about nonequivalence
of the two sublattices that make up the honeycomb crystal
structure of graphene. The gap is on the order of several
tens of meV at the Dirac point and leads to finite masses
for the Dirac fermions. So far, though, this gap has not
been determined experimentally in an unambiguous way.
There are indications of its existence but one is left with
a theoretical value determined from ab initio calculations.?
An alternative way to introduce a gap in graphene monolayer
using h-BN is to synthesize atomically thin films composed
of hybridized h-BN and graphene domains as reported in
Ref. 7. This novel material exhibits structural properties and
a band gap that have not been found in graphene, h-BN, or
boron- and nitrogen-codoped graphene. In addition, this new
structure may be utilized to make unique semiconducting 2D
architectures, which could find applications in electronics.

As far as related theoretical papers are concerned, we first
mention a study of the valley Hall effect® in which the authors
found an analytical expression for the Hall conductivity as
a function of the valley index and a gap between the two
sublattices of graphene in the absence of an external magnetic
field. Further, zigzag-terminated graphene nanoribbons placed
on a h-BN substrate have been investigated” and predicted
to behave like perfect spin filters or analyzers. A theoretical
paper whose subject is closest to ours appeared recently’ and
deals with magnetotransport properties of a gapped monolayer
graphene. More precisely, the authors of Ref. 5 used the
Kubo formula and the self-consistent Born approximation in
order to calculate the Hall conductivity and the longitudinal
conductivity in the presence of long-range impurity potentials.
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Their results suggest that the anomalous integer quantum Hall
effect (IQHE) is preserved under the condition the mass term
is not too large compared to the cyclotron energy. Though that
approach is correct, it is a purely numerical one. In this paper
we follow an alternative approach that employs simpler linear
response formulas and yields clear and analytical expressions
with which it is possible to gain more physical insight into the
problem.

The paper is organized as follows. The theoretical model of
magnetotransport properties of graphene on a h-BN substrate
is presented in Sec. I as well as the expressions for the Hall
conductivity o, and the longitudinal conductivity o,,. Various
numerical results for oy, and the resistivity p,, are presented
and discussed in Sec. III, and Sec. IV summarizes the main
results.

II. THEORETICAL MODEL

When a graphene sample is placed on a boron-nitride
substrate a staggered potential is formed in the plane of
graphene. In practice, this means that the on-site energies
of the carbon atoms belonging to the A and B sublattices
have different values, denoted by A and —A, respectively.
As a consequence, an energy gap between the conduction
and valence bands appears. A new situation brought about by
the staggered potential can still be described by a Dirac-like
Hamiltonian® but with additional diagonal terms. More pre-
cisely, the Hamiltonian of gapped graphene in a perpendicular
magnetic field B in the vicinity of the K point is given by’

H=(A va‘), (1)
vEpy  —A

where v denotes the Fermi velocity, g is the Bohr magneton,
and py = p, £ip,. The Hamiltonian in Eq. (1) is written in
(2 4+ 1) dimensions. In the presence of a magnetic field one uses
the Pierls substitution p — p + ¢A (e > 0). The Zeeman term
in Eq. (1) is neglected since it is important only at very high
magnetic fields (B > 20 T).!%!2 The energy spectrum is then
expressed in terms of the cyclotron energy hw, = hin/2vp /L,
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where £, = /h/eB is the magnetic length. Furthermore, by
choosing the Landau gauge A = (—By,0) and making the
substitutions w1+ = p, £ ip, — eBy, one readily arrives at

H— A VpTT_ 5
N vy —A ] @

The normalized eigenvectors of the eigenvalue problem HWV =

EW are
w 1 Asn q)n—l ikox (3)
n = e,
v L, Sbsn D,

where ®,(&) are the usual oscillator functions with & =
(y— Eka)/ﬂc. Theindexn (n = 0,1,2, ...) labels the discrete
Landau levels while s labels the conduction (s = +1) and
valence bands (s = —1). With Ej, being the eigenvalues the
coefficients ay, and by, are given by

Ebn A Jn
aw = |22 + @)

The case of the zeroth level |s,0,k,) should be treated
separately as usual. In gapless graphene (A = 0), this zero-
energy level is placed at the Dirac point and is equally shared
between the conduction and valence bands. This has the
consequence that its degeneracy is twice as small as that of
other levels (when both valleys are taken into account). Its
normalized eigenvector has the form

W= ( 0 ) ek, )
VL \®o

Notice that |+,0,k,) and |—,0,k,) correspond to the same
level. For n > 0 the eigenvalues of Eq. (2) are given by

Ey = s[A? + 1020?21 = 8,0),  Eqo = FAS8,0. (6)

The sign of the zeroth level energy Ejo, is negative for the K
point and positive for the K’ point. Later, we will introduce
the valley index v = 1,—1, which is not an additional quantum
number as there are two independent (2 x 2) Hamiltonians
(one for each valley). Figure 1 shows the energy spectrum
of single graphene layer in the presence of perpendicular
magnetic field B = 14 T for both valleys (denoted by red
lines online). The spectrum of graphene in the absence of the
magnetic field (B = 0T) is given, versus k€., by the black solid
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FIG. 1. (Color online) Energy spectrum of gapped graphene
(horizontal lines) in the presence of a magnetic field for the K valley
in (a) and the K’ one in (b). The conical-like energy dispersion gives
the spectrum (solid lines) versus k for A # 0 and the dashed lines
that of gapless graphene for B = 0.
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curves, while the dashed lines show that of gapless graphene.
Note that, due to the mass term A, cf. Eq. (6), the spectrum
versus k is not symmetric with respect to the Dirac point.

Assuming that the electric, source-drain field is weak,
one may use linear response theory'® and obtain the Hall
conductivity in the form'?

2
nd_lhe

o' =
1234 E
Iy (B¢ —

(fe = fe)VreVpere
ENE; — Epp +iT,)

@)

where Sp is the area and v, ,; the matrix elements
of the velocity operator, w,v =x,y. Further, f; =[1+
expB(E; — E #)]~! is the Fermi-Dirac distribution function
with 8 = 1/kpT, where T the temperature and Ep is the
Fermi level.

The sum runs over all quantum numbers |{) = |s,n,k,) and
[") = |s',n’, k) provided ¢ # ¢’. The infinitesimal quantity €
in the original form'? has been replaced by I'; to account for
the finite broadening of the Landau levels. Assuming that this
broadening is approximately the same for all states,'* r, ~T,
one can demonstrate that the imaginary part of Eq. (7) vanishes.
Further, it was proven'!3 that I increases with the magnetic
field like occv/B or, more precisely,14 I' = /2/Ahw.. Here the
dimensionless parameter A depends on the concentration of
scattering centers and has values in the range 50-100. In the
spirit of the original derivation of Eq. (7), and in order to obtain
a transparent result for o, we take I' = 0. We will consider a
finite I later in the evaluation of the longitudinal conductivity.

To proceed, one needs the product of the velocity matrix
elements for v = x and = y (diagonal in k,)

PS5, = (snky|ve|s'n'k,) ('K vy |snky) . )

To simplify the notation used, henceforth the quantum number
ky is suppressed. After an explicit evaluation of the product
P.*, one obtains

P”’ —lUF(lam sn| 3n 1, — |asn An| 81171—1) (9)

As usual the matrix elements between the zeroth level and
the other levels should be treated separately.'? Corresponding
to Egs. (8) and (9) one arrives at

’ .2 2 ! .2 2
P(iv;:’ = _”)F|as’n’| 80,n’717 Pnsé = lvFlasn| 8n71,0~ (10)

It is easy to show that | E,| > A for all n, so one may omit
the complex modulus signs in Egs. (9) and (10). One now needs
to sum the terms that include all combinations of the matrix
elements, that is, Z++, Z+_, 3>7F, and Y. Here the
superscript +/— denotes the conduction/valence band. First,
the levels n > 0 are considered due to the peculiarity of the
zeroth level. As shown in the appendix, the Hall conductivity
ok can be expressed as a sum of two terms, in one of which the
prefactor is independent of A and a term in which it is linear
in A, og = ogo + 80k, with

o0

s
oK) — gh Z (I’l +

n=1

N L o
)= i = fe D

and

n En+1

2 o + _ f- + _ f
80’](2 8s€ AZ(fn 3 fn _ fn+1 fnJrl). (12)
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The factor g, is the spin degeneracy. The sums in Egs. (11) and
(12) go from n = 1 to infinity because the zeroth level will be
considered separately. At this point one should recall that these
derivations are done for carriers in the vicinity of the K point
only. In order to take into account carriers near the K’ point as
well, the easiest way to do it is to replace A by —A. Since the
factor A appears in the first (odd) power in Eq. (12), the terms
dog will cancel for n > 0. For n = 0 it can be proven that
the contribution from the zeroth level is 0%’ = g,e?/hf} =
g:¢2/Qh)(f"" + f;"), with the notion that f,"" = f;" =
fo for each valley v. One should not confuse the superscript
=+ in foi’v with the actual sign of the zeroth level energy in
a particular valley. Thus, this term can easily be incorporated
into the final expression for o, without any danger of double
counting. Finally,

oo
O_nd _ gsez Z n +1 ( +v f+,v + f—,v _
yx h 2 n n+l1 n

n=0,v

(13)

The summation over v = 1,—1 is necessary since the zeroth
levels of the K and K’ valleys do not coincide. The form of
Eq. (13) is essentially the same as that of graphene on a SiO,
substrate'? since g; = 2g; (the degeneracy with respect to the
valley degree of freedom is g, = 2). Note that in Ref. 12 the
overall degeneracy factor g; = 4 was denoted by the symbol
gs- At zero or very low temperatures and for the case of zero
gap, Eq. (13) takes a simple form,'>'¢ o7%¢ = +4e®/ h(N +
1/2), where N is a non-negative integer. The last relation can
be expressed in terms of the filling factor v, o;,’;’ = ve?/h,
and, hence,'” v = 4(N + 1/2). The additional factor 1/2 is
the most obvious manifestation of the anomalous IQHE in
gapless samples of monolayer graphene. The existence of a
Landau-like level at zero energy, for A = 0, equally shared
by the conduction and valence bands, is the key to understand
the difference between the IQHE in graphene and in common
semiconductors such as GaAs.'® A more detailed study'® has
investigated the role of the symmetry of the disorder on the
formation of a quantum Hall state in graphene. It is interesting
to note that an expression similar to ox = oo + §ox was
derived in Ref. 8 for the valley Hall conductivity, at B = 0,
with the correction term proportional to A as in Eq. (12).

An equally important quantity for characterizing the mag-
netotransport properties of the materials is the longitudinal
conductivity o,,. When a perpendicular magnetic field is
applied, the diffusive contribution to the conductivity vanishes

dif col

o, = 0and only the collisional (or hopping) contribution o>

is important. The latter is given by'?

2
o = g_;o Z FEIN = fFENWee(ye = ye)?,  (14)
6

where W, is the transition rate between the states |¢) and [¢”),
while y, = (¢]y|¢) is the expectation value of the coordinate
y. If scattering by impurities is assumed to be elastic, the
transition rate W, is given by

27?]1,’
hSo

Wee = > U@ | Feo )8(E—Ec)t, kg 4q,- (15)
q
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with n; the concentration of impurities and q the change in
the electron wave vector. Further, u = E?qz /2, U(q) is the
Fourier transform of the scattering potential, and F; . (u) is the
form factor Fy.(u) = (¢|€'9T|¢"). The expectation value Ve
is readily evaluated, and one finds y, = €%k, and y, = €2k..
The impurity potential is taken to be that of screened charges
U(r) = (e?/4me,eor)e ", where k, is the screening wave
vector, &, the relative permittivity, and gy the permittivity
of the vacuum. The Fourier transform of U(r) is then
given by U(q) = U()/(q2 + k‘g)l/z, where Uy = 62/(26‘,80).
On inserting Eq. (15) in Eq. (14) one notices that the factor
(y¢ — y¢)? will not vanish even for elastic collisions E; = E;/
due to the restriction k, = k. + g,. This is possible because
the Landau states are degenerate with respect to the wave
vector k,. Since the scattering is elastic and the eigenvalues do
not depend on k,, only the transitions n — n are allowed. The
form factors then are given by

|Fs )| = e [a2 Loy (w) + b2, L,w)]’,  (16)

for n > 0 and |F&'§(u)|2 = ¢~ " for n = 0. This expression
is identical to that of Ref. 20 in which, however, the gap
has a different origin. Further, if the impurity potential is
strongly short ranged (of the Dirac §-function type), one
may use the approximation k; >> g. The factor (y, — yer)? is
equal to £*g? cos® . One should not forget the spin degree
of freedom, denoted by o, and it is here suppressed as a
quantum number index. Transforming the sums to integrals,
Dk = gsS0/2m >  and Zq — So/Q2me.)? [du [de,
and using polar coordinates, Eq. (14) takes the form

set pniUs
ot = B P S ) - £ (E)] a7

s,n,v

where u., = E%kf /2 and

I, =/ u| Fs ). (18)
0

The summation over k, does not produce any additional
factor due to the Kronecker symbol &, i/ +4,. In Eq. (17) the
summation over the two valleys, i.e., over v, is performed, and
for that reason only g;, instead of g, appears as the degeneracy
factor. Similarly to the case of the Hall conductivity, this
summation is necessary because the energy spectra in the
two valleys differ in the zeroth level. The integration in
Eq. (18) is carried out analytically using the orthogonal-
ity of the polynomials L,(x) and their recurrence relation
n+1DLp(w)—2n+1—-wl,(u)+nL, 1(u) =0. The
result is

Ly = 2n + D|bgu|* = 2nlas, b |* + 2n — Dlag,|*. (19

When A = 0, the expression for I, reduces to 2n/4, which
means that the minima of o, occur at odd filling factors
v =2n+ 1 in accord with Ref. 16. Recall that in common
semiconductors the minima occur at even filling factors v = 2n
and that o, & 2n + 1).

Scattering by impurities also leads to a k,-dependent
shift or energy correction AEj, = (snk,|U(r)|snk,) of the
eigenvalues that has already been evaluated in Ref. 12. With
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& =kyl.and C = Vp/L L, the result for n > 0 is

sCe™®

Ao = yaym

[1bsn P Hy(8) + 2nlag, P H,_(8)].  (20)

while for n =0 it is AE,y = sCe"?z/ﬁ. However, it is
difficult to assess the quantity C using its formal dependence
on the parameters of the material. A convenient approach is
phenomenological and assumes that C is close'” to the value
of the broadening I". This can be partly justified by the fact
that both quantities are directly related to the scattering by
impurities and by the fact that both have the same dependence
on magnetic field +/B. Further, magnetotransport studies?'
of the activation gap may explain the origin of a particular
splitting: for instance, E(v = %1) is expected’ to be on the
scale of ¢2 /el., hence proportional to VB , in accordance with
the previous assumption C ~ I". As in Ref. 12 the value of &,
is taken to be 10° m~.

III. NUMERICAL RESULTS

First, the Hall conductivity o,, vs. the magnetic field
is shown in Fig. 2 for fixed electron concentration n, =
102 cm~2. The solid curve corresponds to the gapped
graphene while the dotted one to the usual, gapless monolayer
graphene on a SiO, substrate. The difference between the two
curves is most pronounced for high magnetic fields in line with
the spectrum given by Eq. (6).

In Fig. 3 the Hall conductivities of graphene on a h-BN
substrate and on a SiO, substrate are shown as functions
of the electron concentration n, for a fixed magnetic field
B =14 T. The value of the band gap is estimated to be
2A =53 meV from ab initio calculations.” However, we
use the value A =53 meV for illustrative purposes. The
electron concentration can be tuned by applying a gate.'”
The common case A =0 is given by the dotted red curve
and exhibits the usual behavior. The correction AE;, to the
energy levels due to impurities is not included. Notice the
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10k —— gapped graphene (h-BN substrate)
gapless graphene (SiO, substrate)
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FIG. 2. (Color online) The Hall conductivity oy, vs. the magnetic
field at fixed electron concentration n, = 10'2> cm~2. The solid curve
is for a gapped monolayer graphene (A = 53 meV) while the dotted
one for graphene on a SiO, substrate.
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FIG. 3. (Color online) The Hall conductivity oy, vs. the electron
concentration n, for a monolayer graphene on a h-BN substrate with
the mass term A = 53 meV. The dotted red curve corresponds to
graphene supported by a SiO, substrate.

difference of the two curves in the vicinity of n, = 0. This is
in line with experimental observations' that additional plateaus
derived from n = 0 are already visible at considerably smaller
magnetic fields (B > 8.5 T) than reported for monolayer
graphene!! on SiO, substrates. Further insight into the problem
can be gained by inspecting the Hall conductivity near the
Dirac point but at different values of the magnetic field. In
Fig. 4 the value of o,,(= —o,,) is plotted vs. the applied
voltage Vg0 for three magnetic fields: 8 T (black, dashed curve),
11T (red, dotted curve), and 14 T (blue, dash-dotted curve). For
comparison, itis also plotted in the inset, for A = 0, at the same

magnetic fields. The relation between the voltage Vg0 and the

electron concentration n, is linear® n, = egg/ (te)VgO, where

t is the thickness of the substrate, ¢ and gy are the (relative)
permittivity of the substrate and the vacuum, respectively. The
other parameters are the same as those for Fig. 3.
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FIG. 4. (Color online) The Hall conductivity o,, vs. the applied
voltage Vgo for three different magnetic fields: 8 T (black dashed
curve), 11 T (red dotted curve), and 14 T (blue dash-dotted curve),
all for A = 53 meV. The inset shows o, for A = 0.
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FIG. 5. (Color online) The Hall conductivity oy, vs. the voltage
V; for three values of magnetic field: 8 T (black dashed curve), 11 T
(red dotted curve), and 14 T (blue dash-dotted curve). In (a) the
correction to the eigenvalues due to impurities is neglected, while in
(b) it is included.

As can be seen by contrasting the inset with the main figure,
the zero-energy level is replaced by two levels, one for each
valley. In general, the higher the magnetic field the higher ng)
is needed to fill the next Landau level. This results from the
fact the density of states per spin is e B/ h. For clarity, Fig. 5
shows the Hall conductivity versus V9 in the vicinity of the
Dirac point for three different magnetic fields, 8 T, 11 T, and
14 T (as in the previous case). In Fig. 5(a) the energy correction
due to impurities is neglected, while in Fig. 5(b) it is included.
As one can see, the difference is minimal and not visible on
the scale used. This is because the mass term A = 53 meV
is much larger than this correction AEy =~ 11 meV (for the
zeroth level).

Experimentally, one measures the longitudinal resistivity
pqxx related to the longitudinal conductivity o, by

Oxx

Prx 1)

=2 2
GXX + U}X
Of course, o, = a)fjjl, since the diffusive component

vanishes in a perpendicular magnetic field. Figure 6 shows

the longitudinal resistivity p,, as a function of the electron

12
B=14T
8.
af
0 1

ne [10'2 cm™

FIG. 6. (Color online) The longitudinal resistivity p,, vs. the
electron concentration n, at fixed magnetic field B = 14 T. The dotted
red curve corresponds to graphene on a SiO, substrate. The other
parameters are A = 53 meV and T = 4.2 K.
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FIG. 7. (Color online) As in Fig. 6 but with the correction AE,,
to the energy levels included. The magnetic field is B = 14 T. The
dotted (red) curve corresponds to graphene supported by a SiO,
substrate. The inset shows the conductivity oy, with correction to
the energy levels, for three different magnetic fields (the same as
those in Fig. 4). The other parameters are A =53 meV, A = 50,
n=13x100cm2,and T =4.2K.

concentration n, at fixed magnetic field B = 14 T. The solid
curve corresponds to graphene on a h-BN substrate and the
dotted one to graphene on a SiO, substrate. The difference
between the two curves is most visible near zero concentration.
This is expected since the energy spectra differ the most near
the Dirac point, where one has two levels, —A and +A, in
place of a single one for A = 0.

Figure 7 shows the resistivity p,, versus the electron
concentration n, with the correction A E;,, to the energy levels
(due to impurities) taken into account. The dimensionless
parameter A was taken to be A = 50, the impurity concen-
tration n; = 1.3 x 10° cm~2, and the temperature T = 4.2 K.
Recall that the phenomenological parameter A depends on
the concentration n; and takes on larger values for cleaner
samples. The values of p are smaller due to the sensitivity of
the Fermi factors f(E;,) on the position of the levels. The
inset shows the Hall conductivity versus n, for three different
magnetic fields, the same as those in Fig. 4. By contrasting the
dashed red curves in Figs. 6 and 7, one sees no gap in Fig. 6,
in agreement with the observed maxima in p,, for n, =0,
whereas there is one in Fig. 7 due to the energy correction; this
agrees with the results of Ref. 12.

Finally, in order to better understand the nature of the double
peaks of p, in Figs. 6 and 7, we plot p,y, 0., and oy, in Fig. 8
as functions of the electron concentration n, for B = 14 T but
when A Ej,, = 0. The values of p,, (black, solid curve) and o,
(red, dotted curve) are given on the left y axis and those of o,
on the right axis. The other parameters are the same as in Fig. 6.
Note that the minima in py, correspond to plateaus of oy, as it
should be. It can be seen from the figure that the double peaks
in p.,(n,.) are a consequence of a relatively wide transitional
region between two plateaus in o,,. Experimentally, double
peaks are indeed observed in graphene on a h-BN substrate®*
and referred to as a gap collapse at odd fillings. This behavior
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FIG. 8. (Color online) (Left axis) Longitudinal resistivity o,
(solid black curve) and conductivity o,, (dotted red curve) vs.
the electron density n,. (Right axis) The Hall conductivity o,
(dash-dotted blue curve) vs. n,.

tends to appear in cleaner samples and disappears on sample
contamination.?*

IV. CONCLUDING REMARKS

We investigated the magnetotransport properties of
graphene placed on a boron-nitride substrate and derived
analytical expressions for the Hall conductivity o, and
the longitudinal resistivity p,, under certain assumptions
regarding the scattering potential. It was shown that the
analytical form of oy, is essentially the same as that for
the usual, gapless graphene samples, provided the sum (over
states) is carried out separately for the K and K’ valleys. This
results in the fact that the mass term A, in the prefactor of one
contribution to oy,, is canceled in the final sum over the two
valleys.

The results are also in line with the theoretical findings
of Ref. 5 that the usual IQHE is not seen in a single valley
but is restored in the total Hall conductivity. A new plateau
near the Dirac point is predicted to appear as a consequence
of the existence of the band gap. The width of the plateau
increases with the mass term when the Fermi level is varied
at fixed B. The above analysis is valid under the assumption
that the mass term A is not too large compared to the first
Landau level hw,. which is fulfilled for a h-BN substrate and
not too high magnetic fields. However, for the case of Si-C
substrate, with® 2A = 260 meV, this requirement can hardly
be met and suppression of Hall plateaus is predicted, also in
accord with Ref. 5. Further, the scattering by impurities is
taken into account. It induces a plateau near n, = 0 in gapless,
monolayer graphene and very slightly widens that in gapped
graphene. This is also in agreement with previous numerical
studies?® which considered electron-electron interaction as a
source of lifting the degeneracy of the levels with respect to
k. The numerical results for o, show that plateaus are further
shifted (horizontally) to the right due to the band gap 2A.

As far as the resistivity py, is concerned, we demonstrated
that it exhibits an oscillatory behavior vs. the electron concen-
tration n, as expected. The peaks are shifted by both scattering
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by impurities and the band gap induced by the substrate.
The values of p,,, when the correction to the eigenvalues
is included, are somewhat smaller due to sensitivity of the
Fermi factors on the positions of the energy levels. At the end
we addressed the problem of double peaks in p,(#n,.), which
have been observed in recent experimental data.”* Within the
framework of the model presented here, the reason for their
onset is attributed to the wide transitional regions between
two adjacent plateaus in the Hall conductivity. The latter in
turn results from the motion of the Fermi level through the
nonequidistant energy levels in contrast with the equidistant
ones in common semiconductors. However, there could be
additional physical reasons for the onset of the double peaks
which may even enlarge gaps.
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APPENDIX: DERIVATION OF THE HALL CONDUCTIVITY

Starting with Eq. (7), for I'; =0, and setting C;; =
|asnbs |* and A = —Te?v% /S, for brevity, leads to
O’nd—A (frfk - )[C,m 311 n—1 = C,i:f,an’.n-kl]
yx
: (Esn - Es’n’)

knn'ss’

. (AD

where k = k,. Due to the Kronecker § symbols the sums start
at different values so one can split the two terms

s’
n—1 ss’
=A 2 : 2 Cn,n—l
ko= 2”( sn T snfl)
s’

n n+1 s's
—A ; : — n+l,n*

% (A2)
kn=L.ss' sn s 'n+1
Consider first the sum for s = + and s’ = +, denoted by Z++.
On making the changes n — 1 — m — n in the first sum, one
may combine the two sums into one,

o n+1 —
where E,,, = sE, (E, > 0) and
E, AE,—A D+ E
Cif, =~ T -2 e
2E'n-',-] 2En 4EnEn+1
with D = E,E,., — A’ and E = (E, — E,+1)A.
In like manner, one evaluates the sum »
=24 B Rt fﬁ Gl A5
Z Z (En _ E n+l,n> ( )
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with

(D E)/4En En+l (A6)

n+1 n

On the other hand, for Y%~ the order in which indices +
and — appear is important. Hence, one obtains

+— i
=A It 7w -
Z k§1 [(E—.,n+1 - E+’n)2 n+l,n
f"+ — fnji—l
- m Cn+1 n | (A7)
with

Coiin =B+ CO)/4EEp,

n+1,n (A8)

while B = E,E,;1 + A?> and C = (E, + E,11)A.
Similarly, the expression for Z_+ is

B +1 f+ +
=A - - Cn n
Z knzl [(E+ n+l1 — L— ) -
- +
fn - Jn+1 C+— :I

C(E_p — Ep ) M (&9)

with

Criin=(B—C)/AE,Ey .

(A10)

The denominators in Eqs. (A7) and (A9) are equal to (E, +
E,11)* due to the squaring. Adding Egs. (A3) and (A5) gives
=Y*" 437 in the form

Sl:ZAZ[[f’:"]_f-’——i_fn-&-] f ]
o L AEEn i (Ey — En)?

i = S = G — S E]
4EnEn+l(En - En+l)2

(A11)
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>+ 4377 one obtains
+ + . = f"
SZ—ZAZI: n+1 f fn+1 f; B
4E, Ep 1 (Ey + Ent1)
n+l - fn_ - (fn:rl - fn ) C]
4EnEn+l(En + En+l)2 ’

Now, Egs. (All) and (A12) should be added using the
expressions for B, C, D, and E. For the terms xE, E,+ in B
and D one arrives at (a = hzwf)
1 N 1 _AA?4+2(2n+ 1a
(En+ Ens1)?  (Ey — Enp)* a?

By setting S =

+ (A12)

k]

(A13)

while the difference of the two fractions on the left side is
equal to —4E, E, ;1 /a’. Adding the terms ocB, D gives

(Afa) D U = £+ fo = frl@u 1),

k,n=1

(Al4)

which leads to Eq. (11) after summation overk = k, (3_ koo

g5 S0/2m€2). We consider only terms up to the first power in
A. On the other hand, the terms &« E, C give

2AA |: n-:—l_ n+_fn_+1+fn_

k=1 4En En+l En + En+l
+ nt—l - fn_ - fn:—l + fn+i|
En - En-H

= Eu(f51 = i) = Enia (f, = £

|: n+1 n+l _ fn+_fni|
n+1 En

This leads to Eq. (12) after summation over k = k,. The
derivation given above is valid for n > 1. It can be extended
for n = 0; see the text above Eq. (13).
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