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Abstract: The oxidation of formic acid was studied at supported Pt catalyst (47.5 wt%. Pt)
and a low-index single crystal electrodes in sulfuric acid. The supported Pt catalyst was
characterized by the TEM and HRTEM techniques. The mean Pt particle diameter, cal-
culated from electrochemical measurements, fits well with Pt particle size distribution
determined by HRTEM. For the mean particle diameter the surface averaged distribution of
low-index single crystal facets was established. Comparison of the activities obtained at Pt
supported catalyst and low-index Pt single crystal electrodes revealed that Pt(111) plane is
the most active in the potential region relevant for fuel cell applications.

Keywords: formic acid oxidation, Pt single crystals, supported Pt catalyst, particle size,
surface distribution of crystallographic sites.

INTRODUCTION

Simple organic compounds, such as methanol, formaldehyde and formic acid have

been extensively studied as fuels for fuel cells. Formic acid is relatively benign and

non-explosive which makes it facile in handling and distribution, as compared to hy-

drogen. On the other hand, it has a lower energy content with respect to hydrogen or

methanol. Recent data have shown, however, that formic acid fuel cells are attractive

alternatives for small portable fuel cell applications.1

In contrast to the limited informations on formic acid properties as a fuel, many results

have been reported concerning electrocatalytic oxidation of formic acid from the fundamental

viewpoint. Formic acid was studied on polycrystalline2 and single crystal Pt electrodes.3–7

There is an agreement that platinum is initially a good catalyst, but the metal surface is rapidly

poisoned by the strongly adsorbed intermediates identified by spectroscopic studies.8,9

The efforts have been made to enhance oxidation rates of formic acid on platinum by

adding a variety of surface modifiers (adatoms). The increase in the reactivity induced by

adatoms has been accounted for by a “third body effect”, i.e., the third body prevents poi-

son to form on the surface.10–13
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Despite the simplicity of the formic acid oxidation with only two electrons involved,

the reaction proceeds through two parallel paths on platinum14 leading to direct formation

of CO2 and to the formation of COad, which poisons the electrode surface. Both paths are

structure sensitive.15

There are only a few papers reported so far dealing with formic acid oxidation on

Pt-based nanoparticle catalyst,16,17 i.e., on the high surface area catalysts for anode appli-

cation in the direct oxidation formic acid fuel cells.

However, the problem with CO poisoning at potentials relevant for fuel cells remains

still open as in a case of methanol oxidation.

The present paper aims to examine the electrocatalytic properties of supported Pt cat-

alyst (47.5 wt% Pt) in electrochemical oxidation of formic acid in sulfuric acid solution

and to compare the results with the data obtained at low-index single crystal platinum elec-

trodes. This approach was based on the TEM, HRTEM and electrochemical measure-

ments, which allowed the correlation between the size of Pt nanoparticles and the surface

distribution of (111), (100) oriented facets and low-coordinated (110) edge and corner

sites.

EXPERIMENTAL

Commercially available Pt-based catalyst (47.5 wt% Pt) provided by Tanaka Precious Metals Group

supported on high surface area carbon was used. The catalyst was characterized by the transmission electron

microscopy (TEM) and by high resolution transmission electron microscopy (HRTEM) techniques. TEM

and HRTEM images of the electrode as well as the histogram of the particle size distribution are shown in Fig.

1 (a –c). TEM analysis (a) shows that the distribution of metal particle on the carbon support is reasonably

uniform. Typical highly faceted cubooctahedral nanoparticles are shown in part (b). The histogram of the

particle size distribution (c) reveals that the average particle size is ranged between 2 nm and 6 nm.

The catalytic acitivty of the catalyst was determined by using the thin-film rotating disk (RDE) method.

The catalyst was ultrasonically dispersed in Millipore water and a drop of this suspension was placed onto a

polished glassy carbon disk (Sigradur G) diameter 6.7 mm, resulting in metal loading of 20 �g cm-2. After

drying in nitrogen at room temperature, the deposited catalyst layer was covered with 20 �l of a diluted aques

Nafion solution leading to thickness of � 0.2 �m. Finally, the electrode was immersed in nitrogen purged

electrolyte.

In order to verify that the Nafion film used to attach the catalyst particles onto the glassy carbon RDE does

not impose additional film diffusion resistance the polarization curves for the hydrogen oxidation reaction,

(HOR), in a solution saturated with H2 were recorded on supported Pt catalyst in sulfuric acid solution (Fig. 2).

The Levich-Koutecky plot inferred from the diffusion limiting currents at 0.3 Vis shown as an inset in Fig. 2.

As the value of B c0 = 6.51 � 10-2 mA cm-2 rpm-1/2 closely agrees with the theoretical value of

6.54�10-2 mA cm-2 rpm-1/2, assumed from the Levich equation:

j0 = 0.62 nFD2/3
�

-1/6 c0�
1/2 = B c0 �

1/2 (1)

it appears that there is no significant mass transfer resistance through the Nafion film.

The catalytic activity was measured either by recording the potentiodynamic (sweep rate 50 mV s-1) or

quasi steady-state (sweep rate 1 mV s-1) polarization curves.

Formic acid (Merck, p.a.) was added to the solution while the electrode was held at � 0.05 V. The

reference electrode was a saturated calomel electrode (SCE). All potentials are referred to the reversible

hydrogen electrode (RHE) in the same electrolyte. Current densities in Figs. 3 – 6 are given on real surface
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Fig. 1. TEM image of Pt nanoparticles on a carbon black support (a); HRTEM image of generally facetted

shapes of nanoparicles (b); particle size distribution (c).

Fig. 2. Polarization curves for the HOR on Pt supported catalyst in 0.5 M H2SO4. Inset: plot of 1/j vs. �
-1/2.



area scale.

RESULTS AND DISCUSSION

Basic voltammograms

Figure 3 illustrates the voltammograms of the supported Pt catalyst (a) and low-index

single crystal Pt electrodes (b), (only hydrogen adsorption/desorption region), in sulfuric

acid solution. The potential region of hydrogen adsorption/desorption on supported Pt

catalyst accompanied with bisulfate desorption/adsorption is separated from the re-

versible/irreversible oxide formation by the double layer potential region. The features in

the hydrogen region could be rationalized on the basis of hydrogen electrochemistry at

low-index single crystal platinum electrodes in the same acidic solution. The H-desorption

peak at E � 0.15 V can be correlated with the Pt(110) sites. The more positive H-desorption

peaks at E � 0.3 V suggests the presence of Pt(100) related facets. The broad and

featureless H-desorption occurring over the potential range 0.05 V < E < 0.35 V, below the

Pt(110) and Pt(100) peaks, indicates the presence of Pt (111) correlated sites. This

observation is consistent with the fact that the nanostructured platinum was composed of

low coordination – number single crystals.18

Basic voltammogram for supported catalyst (a) was used for an estimation of the real

surface area (S), mass specific surface area (S1) and diameter of Pt particles (d).

The hydrogen adsorption charge (QH) in the potential region 0.05 V < E < 0.4 V was
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Fig. 3. Cyclic voltammograms for Pt supported catalyst (a) and Pt low-index single crystal electrodes (b) in

0.5 M H2SO4. � = 50 mV s-1; T = 295 K.



determined as QH = 0.5(Qtotal – QDL), where Qtotal is a total charge transfer in the

hydrogen adsorption/desorption region and QDL is a capacitive charge from both double

layer charging and a capacitance of the high surface area carbon support. Assuming that

QH = 0.21 mC cm–2 corresponds to a monolayer of adsorb hydrogen19 the value for real

surface area is estimated as S = 4.6 cm2. This value normalized by mass of Pt gives mass

specific surface area S1 = 66 m2 g–1. Assuming that the Pt particles are spherical the

partials diameter calculated by using the equation d = 6���3/�S1, where � = 21.4 g cm-3

and S1 is mass specific surface area is d = 4.3 nm. This value fits well with particle size

distribution obtained by HRTEM.

Formic acid oxidation

Potentiodynamic measurements. The polarization curves for formic acid oxidation on

supported Pt (a) and a low-index platinum electrodes are presented in Fig. 4 (a and b, re-

spectively).

The fraction commences at the surface still partially covered by Had species and

proceeds further through the double layer region with a relatively slow kinetics. Then it

becomes faster in the potential region related to the adsorption of oxygen-containing

species, giving a current maximum at E � 0.95 V. Upon sweep reversal an increase of the

activity is seen which is followed by a gradual decrease as the overpotentials decrease.

The polarization curve for formic acid oxidation on supported Pt catalyst has similar

shape as the curve obtained on a polycrystalline Pt bulk electrode2 suggesting that there is
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Fig. 4. Cyclic voltammograms for the oxidation of 0.5 HCOOH on Pt supported catalyst (a) and on Pt

low-index single crystal electrodes (b) in 0.5 M H2SO4. � = 50 mV s-1; T = 295 K.



no unexpected surface composition of the nanoparticles compared with a bulk electrode.

Abrief interpretation of the voltammograms given in Fig. 4b shows that both Pt (110)

and Pt (100) are completely blocked with poisoning species during the positive sweep up

to high potentials where these species can be oxidized. Upon reversal of the sweeps, the re-

action attains high rates on both planes. On the contrary, the Pt (111) surface shows a negli-

gible poisoning effect over the whole potential region where the reaction occurs. This ob-

servation is supported by the almost overlapping of the sweeps recorded in both directions

of potential scanning.

By comparing the shape of voltammograms on the Pt(hkl) electrodes and on sup-

ported Pt catalyst, it could be suggested that formic acid is oxidized predominantly at the

(111) oriented sites up to E � 0.7 V, in the positive going sweep, while the peak of E � 0.95

V, as well as the large increase of the currents in the negative direction correspond to oxida-

tion at the (110) and (100) facets.

This interpretation is supported by the relationship between Pt particle size and the

different surface sites (crystal facets, edges, corners) done by Kinoshita20,21 on the basis of

the theoretical analysis of ideal geometric structures, which are representative of small Pt

particles. The space lattice of platinum is face-centered cubic and Pt particles are generally

represented as cubooctahedral structures consisting of Pt atoms arranged in (111) and

(100) crystallographic faces bounded by edge and corner atoms. The concentration of sur-

face atoms at the different crystallographic sites vary with the change of particle size. For

an average Pt particle diameter of 4.3 nm, calculated in this work, the surface-averaged dis-

tribution amounts: � 65 % (111) sites, �13 % (100) sites and 22 % corner and edge sites

(which may be correlated with (110) sites).

The data given in Table I displaying the activities of Pt supported catalyst and single

crystal Pt electrodes at E = 0.5 V show that supported Pt catalyst is more active than both

the Pt(100) and the Pt(110) electrodes but less active than the Pt(111) electrode.

In order to obtain a better understanding of formic acid oxidation, the reaction is stud-

ied from its early stage to the potentials of interest for electrocatalysis.

Figure 5 shows the onset of formic acid oxidation in sulfuric acid and the basic

voltammogram for supported Pt catalyst (a). The reaction commences in the hydrogen

adsorption/desorption region at E � 0.15 V and, in the case of sulfuric acid, the onset of the

reaction could not be associated with OH– anions adsorption.

The first sweep up to E = 0.55 V (b) shows an increase of the specific current density

with potential and its decrease upon reversal of the scan. The decrease of the oxidation cur-

rents in the second sweep compared with those recorded in the first sweep indicates a poi-

soning effect. This surface blocking is caused by the presence of (110) and (100) oriented

sites which are very sensitive to “poison” adsorption.

Upon sweep reversal at E = 0.75 V (c) a small hysteresis in the oxidation currents oc-

curs with some increased activity observed during the negative going sweep. This feature

remains unchanged during further scanning suggesting the absence of a poisoning effect.

Actually, it means that the some poison formed in the reaction can be oxidized up to E =
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0.75 V. Most likely COad is the dominant poison which cannot be removed from the

nanostructured Pt catalyst until the potential exceeds at least 0.5 V while a sharp peak is

seen at 0.76 V.22

From the viewpoint of the participation in the reaction of different oriented facets in

the supported Pt catalyst it could be suggested that in the potential region up to E = 0.75 V

the reaction takes place predominantly at the (111) oriented facets although the influence of

(110) and (100) oriented sites could not be neglected.

TABLE I. Activities of Pt supported catalyst and Pt single crystal electrodes at E = 0.5 V

Pt (47.5 wt% Pt) Pt(111) Pt(100) Pt(110)

j / mA cm-2 0.186 1.18 0.08 0.08

Quasi steady-state measurements. The quasi steady-state curve obtained in formic

acid oxidation on supported Pt catalyst is given in Fig. 6.

The reaction follows a Tafel type equation in the potential region between 0.25 V and

0.55 V giving a well defined Tafel line with the slope � 120 mV/dec. It should be pointed

out that in this potential region formic acid oxidation takes place predominantly at the

(111) oriented facets. This suggestion is confirmed by the quasi steady state curve for

formic acid oxidation at the Pt(111) plane shown in the inset of Fig. 6, which has the same

slope of � 120 mV/dec in almost the same potential region. The Pt(111) electrode is also

more active than supported Pt catalyst under the quasi steady-state conditions although less
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Fig. 5. Cyclic voltammogram for the oxidation of 0.5 M HCOOH up to different positive potential limits on

a Pt supported catalyst in 0.5 M H2SO4. � = 50 mV s-1; T = 295 K.



pronounced compared with potentiodynamic conditions (Table I). At E = 0.5 V low-index

(111) surface, in respect to supported Pt catalyst, is 3 times more active in steady-state

measurements and 6 times in potentiodynamic measurements. It is an evidence that the

true catalytic activity can be obtained only in steady-state measurements, while the

activities observed in potentiodynamic experiments are transient in nature.

CONCLUSIONS

1. TEM and HRTEM analysis of supported Pt catalyst (47.5 wt % Pt) used have

shown:

– a relatively uniform distribution of Pt nanoparticles on the carbon support

– cubooctahedral shape of the Pt nanoparticles

– an average Pt particle size between 2 nm and 6 nm.

2. The mean particle diameter d = 4.3 nm calculated in this work is in a good agree-

ment with a particle size distribution determined by HRTEM.

3. For the mean particle diameter of 4.3 nm, the surface distribution amounts: 65 %

(111) sites, 13 % (100) sites and 22 % corner and edge sites (which may be correlated with

low coordination (110) sites.

4. Supported Pt catalyst is more active than (100) and (110) surfaces, but significantly

less active than (111) surface in the potential region relevant for electrocatalytic consider-

ation.
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856 TRIPKOVI], POPOVI] and LOVI]

Fig. 6. Tafel plots for the oxidation of 0.5 M HCOOH in 0.5 M H2SO4 on Pt supported catalyst and on a

Pt(111) surface (inset). � = 1 mV s-1; T = 295 K.
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I Z V O D

PORE\EWE OKSIDACIJE MRAVQE KISELINE NA Pt KATALIZATORU NA

NOSA^U I NA NISKOINDEKSNIM Pt MONOKRISTALIMA U SUMPORNOJ

KISELINI

AMALIJA V. TRIPKOVI], KSENIJA \. POPOVI] i JELENA D. LOVI]

IHTM – Centar za elektrohemiju, Univerzitet u Beogradu, Wego{eva 12, p. pr. 473, 11000 Beograd

Oksidacija mravqe kiseline ispitivana je na Pt katalizatoru nanetom na aktivni ugaq

(47,5 mas % Pt) i na nisko-indeksnim Pt monokristalnim elektrodama u sumpornoj kiselini.

Prvi katalizator je okarakterisan kori{}ewem tehnika transmisione elektronske mikro-

skopije niske (TEM) i visoke rezolucije (HRTEM), pri ~emu je odre|ena distribucija,

veli~ina i oblik nano~estica Pt. Sredwi pre~nik nano~estica, izra~unat iz elektro-

hemijskih merewa, saglasan je raspodeli veli~ina ~estica dobijenoj HRTEM analizom. Na

osnovu sredweg pre~nika nano~estica data je prose~na distribucija (111), (100) i (110) mesta

na povr{ini katalizatora na nosa~u. Ovaj katalizator je aktivniji u oksidaciji mravqe

kiseline od monokristalnih Pt elektroda orijentacije (100) i (110), ali je mawe aktivan od

Pt(111) elektrode u oblasti potencijala relevantnoj za primenu u gorivnom spregu.

(Primqeno 4. aprila, revidirano 9. jula 2003)
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