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ABSTRACT  

The previously proposed stoichiometric model of the Hypothalamic-Pituitary-Adrenal (HPA) 

axis activity that took into account arginine vasopressin (AVP), has been further developed to 

emulate ultradian oscillations of corticotropin-releasing hormone (CRH) and AVP. With this 

aim, additional coupling of HPA consisting hormones was introduced into this model by 

reaction between CRH and cortisol (CORT). How additional coupling of hormones affects HPA 

axis ultradian dynamics and reflects on ultradian oscillations of AVP and CRH concentrations 

was examined by using numerical simulations and bifurcation analysis. Results show that the 

rate constant of newly incorporated reaction alone is sufficient to be adjusted only for CRH to 

exhibit oscillations with optimally prominent amplitudes. Also, oscillation frequencies of CRH 

were found to be in accordance with findings in the literature under all investigated conditions. 

 

INTRODUCTION 

The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system involved in 

maintaining various basal bodily functions and launching life-sustaining adaptive response to 

internal/external and acute/chronic stressors. This highly complex nonlinear system exhibits a 

distinctive oscillatory dynamics reflected in ultradian (pulsatile) oscillations superimposed on 

circadian oscillations of its comprising hormones that are intertwined via positive and negative 

feedback loops [1].  

 The aim of this study is to simulate ultradian oscillations of both corticotropin-releasing 

hormone (CRH) and arginine vasopressin (AVP) in the previously proposed stoichiometric 

model of the HPA axis activity in humans that already included both of them [2]. The effect of 

inducing ultradian oscillations of these species on HPA axis ultradian dynamics was also 

examined. For these purposes, modelling of reaction mechanism, numerical simulations and 

bifurcation analysis are used. 

 

MODEL AND METHODS 

Stoichiometric model of HPA axis activity in humans, derived from our preceding models [3-

7], has been developed to investigate the effects of cholesterol, as the primary precursor of all 

steroid hormones, on the ultradian and circadian HPA axis activity [8]. This postulated model 

is then used as the basis to incorporate AVP effects on adrenocorticotropic hormone (ACTH) 

secretion by reaction steps (R1) - (R5) (Table 1) [2]. As in our previous cases [9-11], we have 

here additionally coupled the HPA axis hormones by the reaction step (R6) (Table 1). This 

resulted in the appearance of ultradian concentration oscillations of CRH and AVP. Anyhow, 

mailto:alek.stoj@gmail.com
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the extended variant presented here, retained the same number of dynamic variables as in [2]: 

CRH, AVP, ACTH, cortisol (CORT), aldosterone (ALDO) and cholesterol (CHOL).  

 

All reaction steps presented in Table 1 

depict end-results of series of complex 

biochemical processes. Processes resulting in 

appropriate inflows of AVP from two 

different sources, ACTH secretion stimulated 

by AVP alone and in synergy with CRH, as 

well as, AVP outflow from HPA system are 

presented by reaction steps (R1) - (R5) and 

described in more detail in [2]. Additional 

coupling of HPA hormones is introduced by 

reaction between CRH and CORT (R6). In 

order to examine the effect of additionally 

coupling the hormones on HPA axis ultradian 

dynamics, bifurcation analysis based on 

numerical simulations of dynamic states 

obtained for different values of rate constant 

k6 ((R6), Table 1) was applied. Numerical 

simulations were conducted using the Matlab 

software package and the ode15s solver 

routine based on the Gear algorithm for integration of stiff differential equations. In all 

simulations, rate constants of reaction steps related to the inflows of AVP ((R1) in Table 1) [2] 

and CRH ( CRH→ ) [2, 8] into the pituitary portal system from the same parvocellular neuronal 

population of the hypothalamic paraventricular nucleus, were kept the same and equal to 1.83 

× 10−8 mol dm−3 min−1 as in [2]. Also, the rate constant of their synergistic reaction, depicted 

by reaction step (R4) in Table 1, in this study had value of k4 = 3.66 × 102 mol−1 dm3 min−1. 

The values of other rate constants in this HPA axis model were the same as in [2], unless 

otherwise specified. Also, in all simulations, the absolute and relative tolerance errors were 3 × 

10−20 and 1 × 10−14, respectively. The initial concentrations, expressed in mol dm−3 and marked 

as M, were: [CHOL]0 = 3.4 × 10−4 M, [CRH]0 = 1 × 10−12 M, [AVP]0 = 1 × 10−12 M, [ACTH]0 

= 8 × 10−8 M, [CORT]0 = 4 × 10−8 M and [ALDO]0 = 1.5 × 10−9 M.  

 

RESULTS AND DISCUSSION   

Results presented in Figure 1 show that the rate constant of HPA hormones additional coupling 

(k6) can influence the amplitude of cortisol oscillations and dynamical regime changes of the 

HPA system. Namely, for values of k6 < 107 M−1 min−1, the influence of k6 is very low to non-

existent and the HPA system exhibits oscillatory dynamics. By increasing the value of k6 (for 

k6 > 107 M−1 min−1), the system transits from oscillatory dynamic states to stable steady states 

through supercritical Andronov-Hopf (AH) bifurcation. Additionally, by increasing value of k6, 

amplitudes of cortisol oscillations increase, reaching a maximum and then rapidly decrease in 

the vicinity of AH bifurcation. The described cortisol amplitude changes with control parameter 

could also be directly observed in Figure 2 for selected sample values of k6, assigned by letters 

(a) and (b) in Figure 1.   

Table 1. Summarized reaction steps 

associated with arginine vasopressin (AVP) 

in previously proposed stoichiometric 

network model of HPA axis activity [2] 

and reaction step incorporated into this 

model to induce CRH and AVP ultradian 

oscillations by additionally coupling of the 

HPA hormones (colored in red). 

1k
AVP⎯⎯→  (R1) 

2k
AVP⎯⎯→  (R2) 

3k
AVP ACTH  ⎯⎯→  (R3) 

4k
CRH + AVP ACTH⎯⎯→  (R4) 

5k
3AVP P⎯⎯→  (R5) 

6k
7CRH + CORT P⎯⎯→  (R6) 
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On the other hand, if one considers how 

different values of the control parameter 

are reflected on the ultradian oscillations of 

CRH and AVP, it could be observed that 

amplitudes of the species oscillation 

follow a similar pattern of changes with 

increase in k6 as cortisol. However, the 

magnitude of amplitude changes with 

increase of k6 differs among two species 

for a given value of synergy constant. 

Namely, for k6 = 107 M−1 min−1, the 

amplitudes of CRH and AVP are both 

extremely small as to not exist at all 

(Figure 2, (a)). On the other hand, when k6 

= 1010 M−1 min−1 (Figure 2, (b)) is applied, 

amplitudes of both species increased, but 

the magnitude of this change is 

considerably higher in the case of CRH 

than in the case of AVP for which the 

amplitude is almost non observant. Further 

increase of k6 did not change the amplitude 

of AVP noticeably. All this indicates that 

for a given set of rate constants in this HPA 

axis model, the additional coupling of 

hormones has dominant effect on CRH 

ultradian oscillations. On the other hand, if 

different values of the synergy constant or the rate constant(s) of some other reaction(s) in the 

model were applied, conditions for AVP to also exhibit ultradian oscillations with optimal 

amplitudes would be probably found. Furthermore, in all simulations oscillation frequency of 

CRH was found to range from 2.1 to 2.6 oscillations per hour, which is in accordance with the 

literature [12]. All these results indicate that feedback loop between CRH and CORT impacts 

the CRH to exhibit ultradian oscillations.  

 

CONCLUSION 

The previously proposed stoichiometric model of HPA axis activity that included AVP is 

extended to emulate ultradian oscillations of both CRH and AVP. Furthermore, conditions were 

found in this study only for CRH to exhibit optimally prominent oscillations with frequencies 

that agree well with experimental findings reported in the literature. Thereby, a step closer is 

made to veritably emulate properties of the real HPA axis activity by this model.  
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Figure 1. Bifurcation diagram obtained with 

rate constant k6 as control parameter. Black 

curve represent stable steady states. 

Minimums and maximums in oscillations of 

cortisol concentrations ([CORT]) are depicted 

by blue and red curves, respectively. (a) k6 = 

107 M−1 min−1, (b) k6 = 1010 M−1 min−1, the 

value of synergy rate constants was k4 = 3.66 

× 102 M−1 min−1. All other rate constants used 

in analysis had values as indicated in [2, 8]. 
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(a
) 

   

(b
) 

   
Figure 2. Temporal evolutions of concentrations of CRH, AVP and cortisol ([CRH], [AVP] and 

[cortisol]) for two selected values of control parameter (k6) in bifurcation diagram in Figure 1, 

for the arbitrarily chosen time interval between around 240 and 243 hours. (a) k6 = 107 M−1 

min−1, (b) k6 = 1010 M−1 min−1. The value of synergy rate constants was k4 = 3.66 × 102 M−1 

min−1. All other rate constants used in this study had values as indicated in [2, 8]. 

sConcentrations of all presented species are given in M = mol dm−3. 
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