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Abstract: The Lipidomic profiles of serum samples from patients with bipolar disorder (BD) and
healthy controls (C) were explored and compared. The sample cohort included 31 BD patients
and 31 control individuals. An untargeted lipidomics study applying liquid chromatography (LC)
coupled with high-resolution mass spectrometry (HRMS) was conducted to achieve the lipid profiles.
Multivariate statistical analyses (principal component analysis and partial least squares discriminant
analysis) were performed, and fifty-six differential lipids were confirmed in BD and controls. Our
results pointed to alterations in lipid metabolism, including pathways of glycerophospholipids,
sphingolipids, glycerolipids, and sterol lipids, in BD patient sera. This study emphasized the role of
lipid pathways in BD, and comprehensive research using the LC-HRMS platform is necessary for
future application in the diagnosis and improvement of BD treatments.
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1. Introduction

Bipolar disorder (BD) is a psychiatric illness defined by altering mood states such as
euthymia, major depression, and mania [1]. BD is correlated with impaired quality of life,
disability, and premature mortality, with a prevalence of 60 million people worldwide [2].
Diagnosis of BD exclusively depends on the subjective recognition of symptoms, still
without objective methods such as a clinical test of biomarker identification, instigating
misdiagnosis, inadequate treatments, and deficient clinical outcomes [3–6]. Mainly, BD
patients have a depressive episode in the initial phase of the disease, whose symptoms
slightly differ from unipolar depression [7], and often, only some BD cases are correctly
diagnosed and treated, causing the progression of illness [1,8,9]. Additionally, current
antipsychotics and antidepressants used in treatments are effective in only 40–60% of BD
patients, causing severe side effects [10,11]. Therefore, discovering potential biomarkers
is crucial to providing accurate and early diagnosis and monitoring of BD [12]. Desirable
biomarker candidates should have features including their correlation with functional
outcomes and practical, inexpensive, reproductive, and non-invasive methods of their
determination and monitoring [13,14]. Currently, proteomics, genomics, and metabolomics
are important platforms for measuring potential biomarkers in psychiatric diseases [15–23].
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In the near future, combined data obtained by all ‘omics’ platforms in predictive models
might provide a comprehensive view of BD diagnosis [14,24,25].

Lipids include different subclasses that play an important role in the regulation of neu-
ronal development and function, modulation of neuronal plasticity of membranes [26–28], as
well as the effect on energy metabolism in the brain [29–31]. Lipidomics is not a sufficiently
explored ‘omics’ platform in the study of psychiatric diseases [32–34], although the recent
comprehensive identification of hundreds of different lipid molecules in tissues, plasma,
and serum using liquid chromatography coupled to mass spectrometry confirms its im-
portant role in the biomarker discovery of psychiatric diseases [35–37]. Alterations in the
lipid metabolism were described, including changes in free fatty acid (FFA), glycerophos-
pholipids (GP), sphingolipids (SP), and glycerolipids (GL) in plasma and serum [38–45], as
well as in the arachidonic acid metabolism in the brain and periphery [37,46,47].

The objective of the present study was to carry out an untargeted lipidomics of serum
samples from BD patients and healthy individuals to examine their lipid profiles and to
analyze differential lipids in these two groups. These results might provide comprehensive
insights into alterations in lipid metabolism in BD and the identification of potential
biomarkers, improving further studies on the diagnosis and treatment of BD.

2. Results

A total of 31 patients with BD, including 13 males and 18 females, with ages between
20 and 74 years, and 31 healthy control participants, males (16) and females (15), with
ages between 24 and 54 years old, were included in this study (Table 1). There are no
statistically significant differences in age, gender, or BMI (body mass index) between the
groups. Blood serum samples from both groups were taken after a minimum of 8 h of
fasting and prepared in triplicate for further analysis.

Table 1. Demographic and clinical characteristics of patients and controls were included in the study.

Variable BD (N = 31) C (N = 31)

Nationality; race (%) Serbian; white (100%) Serbian; white (100%)
Medications use, N (%)
Antipsychotics of the first generation 2 (6.45%) /
Antipsychotics of the second generation 24 (77.42%) /
Anxiolytics 5 (16.13%) /
Smokers, N(%) 22 (70.97%) 18 (58.06%)
Age range (mean) 20–74 (48.12) 24–54 (47.86)

Selection of Potential Lipid Biomarkers

A total of 201 m/z features for combined negative–positive ion modes were selected
using the LC–HRMS method in this study. Principal component analysis (PCA) was
performed on all samples, including BD patients and healthy controls (C), to observe the
natural tendency of grouping into the classes of interest and to identify anomalous samples
(outliers). As can be seen from Figure 1a, the PCA results confirmed no clear separation
between BD and C and greater homogeneity among the BD samples. The total variance
explained by the five components (all constructed with 201 variables) of the PCA model was
74.9%, whereas the first two PCA components accounted for 48.3% and 14.3%, respectively.
The number of components and PCA model were determined using the Scree plot and the
number of captured variances for each component from MetaboAnalyst.

Overall, 12 outliers (5 BD samples of 3 patients and 7 C samples of 4 individuals)
were identified by PCA as samples lying outside the corresponding 95% Hoteling’s T2
confidence ellipse.

After removing identified outliers and before further proceeding to assemble supervised-
based models, the initial data set was split into training and test parts, as explained in the
experimental section. Then, the supervised models on the training set of samples (118 sam-
ples: 59 BD and 59 C) were applied to explore the significant features that differentiated the
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groups, considering the variable importance in projection (VIP) scores with values higher
than 1.0. The results of the partial least squares discriminant analysis (PLS-DA) are shown
in Figure 1b.
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showing 95% confidence ellipses for these two groups. (b) Results of the PLS-DA model score plot 
of the MS data obtained for the training set of BD patients (blue, triangles) and healthy controls (C, 
green, crosses) using five components, with 40.7% variance in Component 1 and 11.0% in Compo-
nent 2. 
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(https://www.lipidmaps.org/, accessed on 21 August 2023) [48] and Human Metabolome 
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Figure 1. (a) PCA model scores plot: PCs 1 and 2 (with 48.3% and 14.3% variance, respectively) of the
MS data obtained for all BD patients (blue, triangles) and healthy controls (C, green, crosses), showing
95% confidence ellipses for these two groups. (b) Results of the PLS-DA model score plot of the
MS data obtained for the training set of BD patients (blue, triangles) and healthy controls (C, green,
crosses) using five components, with 40.7% variance in Component 1 and 11.0% in Component 2.

The PLS-DA score plot showed the observed clustering tendency between the BD and
C groups. The m/z values of lipids that distinguished BD from C samples were revealed
by validated PLS-DA classification using five components (accuracy: 0.983, R2: 0.878,
and Q2: 0.748), and among them, 72 differential m/z features belonging to the 56 lipid
molecules (Figure 2a and Table 2) showed the highest contributions to group separation,
with VIP values higher than 1.0. The lipids were tentatively assigned using the accurate
mass measurements and databases—LIPID MAPS Structure Database (LMSD) (https://
www.lipidmaps.org/, accessed on 21 August 2023) [48] and Human Metabolome Database
(HMDB) (https://hmdb.ca/, accessed on 21 August 2023) [49] (Figure 2a and Table 2).
The cluster analysis presented in the heatmap (Figure 2c) also confirmed the clustering
tendency of groups.

Almost all lipid molecules show the highest contributions to group separation, with
VIP values higher than 1.0, with the exception of Cer 34:1;O2 and are more abundant in C
samples. These lipids are typically rich in double bonds, i.e., unsaturated fatty acids (UFAs,
one double bond) and polyunsaturated fatty acids (PUFAs, multiple double bonds, up to
six in PC 38:6, PC O-38:6, and PC O-40:6). The lipid molecules that contribute the most to
the separation of BD and C groups (Figure 2a and Table 2) belong to different lipid classes,
including: (1) GP (mainly 1-alkyl,2-acyl-glycerophosphocholines (PC O-) and diacylglyc-
erophosphocholines (PC), and a small number of 1-acyl-sn-glycero-3-phosphocholines
(LPC), 1-acyl-sn-glycero-3-phosphoserines (LPS), 1,2-diacyl-sn-glycero-3-phosphates (PA),
and diacylglycerol-phosphoserines (PS)), (2) SP (mainly ceramide phosphocholines (sph-
ingomyelins) (SM) and some N-acylsphinganines (dihydroceramides) (Cer)), and (3) GL
(mainly triacylglycerols (TG)). In contrast, fatty acyls (FA) and sterol lipids (ST)—cholesterol
ester (CE)—are much less represented. Details about the distribution of lipid classes in
percentages are given in Figure 3.

https://www.lipidmaps.org/
https://www.lipidmaps.org/
https://hmdb.ca/
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Figure 2. The variable importance in projection (VIP) values greater than 1.0 obtained by the PLS-
DA model show the most important metabolites that are discriminatory for BD patients and healthy 
controls (C); the metabolites more abundant in C samples are shown in blue, while the metabolite 
more abundant in BD samples is shown in red (a), the PLS-DA classification using five components 
(the red star indicates the best classifier). Accuracy: 0.983, R2: 0.878, and Q2: 0.748 (b), and cluster 
analysis obtained with the top 72 variables of VIP scores generated by the PLS-DA presented as a 
heatmap (distance measure using Euclidean) and clustering algorithm using ward (D). The BD sam-
ples are shown in blue and C in green (c). 

Table 2. Relevant m/z values selected by the PLS-DA model (combined positive and negative ion 
modes) relating to the lipids found differently in bipolar disorder (BD) patients and healthy controls 
(C). * m/z mass-to-charge ratio; LPC: 1-acyl-sn-glycero-3-phosphocholines; GP: glycero-phospho-li-
pids; FA: fatty acyls; PA: 1,2-diacyl-sn-glycero-3-phosphates; LPS: 1-acyl-sn-glycero-3-phospho-ser-
ines; SP: sphingolipids; Cer: N-acylsphinganines (dihydroceramides); SM: ceramide phospho-cho-

Figure 2. The variable importance in projection (VIP) values greater than 1.0 obtained by the PLS-DA
model show the most important metabolites that are discriminatory for BD patients and healthy
controls (C); the metabolites more abundant in C samples are shown in blue, while the metabolite
more abundant in BD samples is shown in red (a), the PLS-DA classification using five components
(the red star indicates the best classifier). Accuracy: 0.983, R2: 0.878, and Q2: 0.748 (b), and cluster
analysis obtained with the top 72 variables of VIP scores generated by the PLS-DA presented as
a heatmap (distance measure using Euclidean) and clustering algorithm using ward (D). The BD
samples are shown in blue and C in green (c).
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Table 2. Relevant m/z values selected by the PLS-DA model (combined positive and negative
ion modes) relating to the lipids found differently in bipolar disorder (BD) patients and healthy
controls (C). * m/z mass-to-charge ratio; LPC: 1-acyl-sn-glycero-3-phosphocholines; GP: glycero-
phospho-lipids; FA: fatty acyls; PA: 1,2-diacyl-sn-glycero-3-phosphates; LPS: 1-acyl-sn-glycero-3-
phospho-serines; SP: sphingolipids; Cer: N-acylsphinganines (dihydroceramides); SM: ceramide
phospho-cholines (sphingomyelins); PC: diacylglycerophosphocholines; PC O-: 1-alkyl,2-acyl-
glycero-phosphocholines; PS: diacylglycerolphosphoserines; DG: diacylglycerols; GL: glycerolipids;
TG: triacylglycerols; CE: cholesterol ester; ST, sterol lipids.

No. Retention
Time (min) VIP Value VIP Feature

Assignment
Measured

m/z *
Ion Mode

Adduct
Proposed
Formula

Lipid As-
signment

Lipid
Class

1.4548 LPC 18:2 A1 520.3385 [M+H]+

1.3381 LPC 18:2 A2 542.3228 [M+Na]+1 1.29
1.5673 LPC 18:2 A 578.3494 [M+OAc]−

C26H50NO7P

LPC 18:2 GP

2 1.52 1.4205 LPC 16:0 A2 496.3385 [M+H]+ C24H50NO7P LPC 16:0 GP
3 2.15 1.3184 FA 24:0;O 402.3924 [M+NH4]+ C24H48O3 FA 24:0;O FA
4 2.15 1.2832 FA 22:0 358.3661 [M+NH4]+ C22H44O2 FA 22:0 FA
5 3.12 1.0837 PA 25:0 589.3263 [M+K]+ C28H55O8P PA 25:0 GP

6 3.12 1.1387 LPS O-24:1;O 632.3937 [M+Na]+ C30H60NO9P LPS
O-24:1;O GP

7 3.35 1.1909 FA 21:4;O6 415.2349 [M+H]+ C21H34O8 FA 21:4;O6 FA
8 4.77 1.1020 Cer 34:1;O2 A 560.5026 [M+Na]+ C34H67NO3 Cer 34:1;O2 SP
9 5.09 1.3798 SM 32:1;O2 675.5427 [M+H]+ C37H75N2O6P SM 32:1;O2 SP

10 5.17 1.3764 SM 34:2;O2 A1 701.5587 [M+H]+ C39H77N2O6P SM 34:2;O2 SP
11 5.43 1.2202 SM 33:1;O2 689.5584 [M+H]+ C38H77N2O6P SM 33:1;O2 SP
12 5.63 1.6594 PC 38:6 A 806.5691 [M+H]+ C46H80NO8P PC 38:6 SP
13 5.73 1.9145 PC 36:4 782.5695 [M+H]+ C44H80NO8P PC 36:4 GP

1.3527 SM 34:1;O2 A1 703.5748 [M+H]+
14 5.75 1.2116 SM 34:1;O2 A2 725.5564 [M+Na]+ C39H79N2O6P SM 34:1;O2 SP

15 5.95 1.3059 SM 34:1;O2 703.5746 [M+H]+ C39H79N2O6P SM 34:1;O2 SP
16 6.04 1.4245 PC 36:4 B5 782.5716 [M+H]+ C44H80NO8P PC 36:4 GP
17 6.09 1.0887 PC 33:2 B 802.5619 [M+OAc]− C41H78NO8P PC 33:2 GP

1.6487 PC 34:2 A2 1516.1288 [2M+H]+

1.6482 PC 34:2 A3 796.5254 [M+K]+

1.6229 PC 34:2 A4 780.5515 [M+Na]+

1.5566 PC 34:2 A5 758,5787 [M+H]+

1.1697 PC 34:2 A6 184.0725 [C5H14NO4P+H]+

18 6.12

1.7568 PC 34:2 A 816.5779 [M+OAc]−

C42H80NO8P PC 34:2 GP

19 6.37 1.5682 PC O-36:5 766.5744 [M+H]+ C44H80NO7P PC O-36:5 GP
20 6.38 1.0028 PC O-36:4 A1 826.5976 [M+OAc]− C44H82NO7P PC O-36:4 GP
21 6.46 1.4419 PC O-38:6 792.5894 [M+H]+ C46H82NO7P PC O-38:6 GP
22 6.50 1.8977 PC O-34:3 742.5741 [M+H]+ C42H80NO7P PC O-34:3 GP
23 6.51 1.1837 PC 35:2 A1 772.5849 [M+H]+ C43H82NO8P PC 35:2 GP
24 6.53 1.9588 PC O-36:4 768.5900 [M+H]+ C44H82NO7P PC O-36:4 GP
25 6.60 1.6051 PC O-38:5 A 794.6057 [M+H]+ C46H84NO7P PC O-38:5 GP
26 6.64 2.1701 PC O-34:2 744.5895 [M+H]+ C42H82NO7P PC O-34:2 GP
27 6.73 1.9050 PC O-36:3 770.6046 [M+H]+ C44H84NO7P PC O-36:3 GP
28 6.83 1.2700 PC 35:2 830.5927 [M+H]+ C43H82NO8P PC 35:2 GP

1.6528 PC 36:2 A2 808.5828 [M+Na]+

1.6180 PC 36:2 A3 824.5563 [M+K]+29 6.83
1.8175 PC 36:2 A 844.6088 [M+OAc]−

C44H84NO8P PC 36:2 GP

30 6.87 1.6510 PS 41:4 876.5696 [M+Na]+ C47H84NO10P PS 41:4 GP
31 6.95 1.4782 PC O-32:1 718.5736 [M+H]+ C40H80NO7P PC O-32:1 GP
32 6.97 1.2903 Cer 36:0;O2 568.5651 [M+H]+ C36H73NO3 Cer 36:0;O2 SP
33 7.08 1.9935 PC O-40:6 837.6194 [M+NH4]+ C48H86NO7P PC O-40:6 GP
34 7.08 1.2704 PC O-34:2 744.5891 [M+H]+ C42H82NO7P PC O-34:2 GP
35 7.11 1.5948 PC O-32:0 720.5892 [M+H]+ C40H82NO7P PC O-32:0 GP
36 7.14 1.4019 PC O-38:5 B 794.6051 [M+H]+ C46H84NO7P PC O-38:5 GP
37 7.22 1.4158 PC O-34:1 746.6050 [M+H]+ C42H84NO7P PC O-34:1 GP
38 7.31 1.6438 PC O-38:4 796.6209 [M+H]+ C46H86NO7P PC O-38:4 GP
39 7.34 1.4761 SM 38:1;O2 759.6370 [M+H]+ C43H87N2O6P SM 38:1;O2 SP
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Table 2. Cont.

No. Retention
Time (min) VIP Value VIP Feature

Assignment
Measured

m/z *
Ion Mode

Adduct
Proposed
Formula

Lipid As-
signment

Lipid
Class

40 7.36 1.3589 PC 34:0 762.5997 [M+H]+ C42H84NO8P PC 34:0 GP
41 7.46 1.6474 SM 40:2;O2 785.6529 [M+H]+ C45H89N2O6P SM 40:2;O2 SP
42 7.88 1.1853 SM 41:2;O2 799.6680 [M+H]+ C46H91N2O6P SM 41:2;O2 SP
43 8.09 1.9568 SM 40:1;O2 787.6687 [M+H]+ C45H91N2O6P SM 40:1;O2 SP
44 8.49 1.7303 SM 41:1;O2 801.6839 [M+H]+ C46H93N2O6P SM 41:1;O2 SP
45 8.86 2.0248 SM 42:1;O2 815.6997 [M+H]+ C47H95N2O6P SM 42:1;O2 SP
46 9.75 1.5408 DG 37:7 647.4579 [M+Na]+ C40H64O5 DG 37:7 GL
47 9.96 1.7561 Cer 42:1;O2 672.6257 [M+Na]+ C42H83NO3 Cer 42:1;O2 SP

1.0751 TG 52:4 A2 877.7257 [M+Na]+

1.0570 TG 52:4 A3 893.6996 [M+K]+48 11.31
1.0632 TG 52:4 A1 872.7703 [M+NH4]+

C55H98O6

TG 52:4

GL

49 11.31 1.1380 TG 58:4 956.8632 [M+NH4]+ C61H110O6 TG 58:4 GL
1.2129 TG 52:3 A2 879.7414 [M+Na]+

1.0899 TG 52:3 A3 895.7152 [M+K]+50 11.49
1.1909 TG 52:3 A1 874.7863 [M+NH4]+

C55H100O6 TG 52:3 GL

51 11.49 1.2905 TG 58:3 958.8792 [M+NH4]+ C61H112O6 TG 58:3 GL
52 11.55 1.1582 TG 49:1 836.7694 [M+NH4]+ C52H98O6 TG 49:1 GL

1.8587 CE 18:2 A2 671.5727 [M+Na]+

2.0131 CE 18:2 A3 1320.1560 [2M+Na]+53 11.58
1.5672 CE 18:2 A1 666.6174 [M+NH4]+

C45H76O2 CE 18:2 ST

54 11.62 1.4854 TG 48:0 A1 824.7697 [M+NH4]+ C51H98O6 TG 48:0 GL
55 11.65 1.0435 TG 58:2 960.8947 [M+NH4]+ C61H114O6 TG 58:2 GL
56 11.79 1.0106 TG 50:0 852.7998 [M+NH4]+ C53H102O6 TG 50:0 GL
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phoserines; Cer: N-acylsphinganines (dihydroceramides); SM: ceramide phosphocholines (sphin-
gomyelins); CE: cholesterol ester. Identified Cer, FA, LPC, PC, PC O- and TG contain saturated as 
well as unsaturated fatty acids; PA contains only saturated fatty acids, while CE, DG, LPS, PS, and 
SM contain only unsaturated fatty acids. 
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latent variables as the feature ranking method (Figure 4). All ROC curves created by 
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Figure 3. Distribution of lipid classes (a) and subclasses (b) in differential lipids identified for
BD and C comparison. FA: fatty acyls; GL: glycerolipids; GP: glycerophospholipids; SP: sph-
ingolipids; ST: sterol lipids; DG: diacylglycerols; TG: triacylglycerols; LPC: 1-acyl-sn-glycero-3-
phospho-cholines; LPS: 1-acyl-sn-glycero-3-phosphoserines; PA: 1,2-diacyl-sn-glycero-3-phosphates;
PC: diacylglycerophosphocholines; PC O-: 1-alkyl,2-acyl-glycerophosphocholines; PS: diacylglycerol-
phosphoserines; Cer: N-acylsphinganines (dihydroceramides); SM: ceramide phosphocholines (sph-
ingomyelins); CE: cholesterol ester. Identified Cer, FA, LPC, PC, PC O- and TG contain saturated as
well as unsaturated fatty acids; PA contains only saturated fatty acids, while CE, DG, LPS, PS, and
SM contain only unsaturated fatty acids.
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To obtain potential biomarkers, multivariate ROC curve exploration analysis has
been performed using PLS-DA as the classification method and PLS-DA built-in with
two latent variables as the feature ranking method (Figure 4). All ROC curves created by
MetaboAnalyst 5.0 from six different biomarker models considering different numbers
of features (5, 10, 15, 25, 50, and 100) presented the area under the curve (AUC) at least
0.923 with a confidence interval (CI) between 0.841 and 1.000 (Figure 4a). The highest
accuracy was achieved for the 100-feature panel of Model 6 (Figure 4b), which presented
AUC = 0.954 (0.888–1.000 with 95% CI) (Figure 4c), accuracy 92.4%, sensitivity 98.3%, and
specificity 86.4% (Figure 4d, left side).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 19 
 

 

  
(a) (b) 

 
 

(c) (d) 

Figure 4. Biomarker prediction and validation by multivariate ROC curve-based exploratory analy-
sis and multivariate ROC curve-based model evaluation (Tester), respectively. (a) Overview of all 
ROC curves created by MetaboAnalyst 5.0 from six different biomarker models considering differ-
ent numbers of features (5, 10, 15, 25, 50, and 100) with their corresponding AUC and CI values. The 
ROC test classification method was PLS-DA, and the feature ranking method was PLS-DA built-in 
with two latent variables. (b) Graphic presenting the predictive accuracies of six different biomarker 
models with an increasing number of features. The red dot specifies the highest accuracy for the 
100-feature panel of Model 6. (c) ROC curve for selected biomarker Model 6. (d) The predicted class 
probabilities of the training set of samples using selected biomarker Model 6 (accuracy: 92.4%; sen-
sitivity: 98.3%; specificity: 86.4%)—on the left side, and the predicted scores for the test set of sam-
ples (accuracy: 83.9%; sensitivity: 79.4%; specificity: 90.9%)—on the right side. The classification 
boundary is located at the center (x = 0.5, the dotted line). Misclassified samples in both training and 
test sets are shown as empty circles, blue for the BD group and green for the C group. 

To estimate the validity of the model created with the training set of samples, ROC 
curve-based model evaluation (Tester) analysis (using the PLS-DA algorithm with two 
latent variables) was performed with the test set of samples (consisting of a total of 56 
samples: 29 BD and 27 C). The results of this analysis are presented in Figure 4d on the 
right side. There, the average of the predicted class probabilities of samples across the 100 
cross-validations using the created classifier is shown. As the algorithm uses a balanced 

Figure 4. Biomarker prediction and validation by multivariate ROC curve-based exploratory analysis
and multivariate ROC curve-based model evaluation (Tester), respectively. (a) Overview of all ROC
curves created by MetaboAnalyst 5.0 from six different biomarker models considering different
numbers of features (5, 10, 15, 25, 50, and 100) with their corresponding AUC and CI values. The
ROC test classification method was PLS-DA, and the feature ranking method was PLS-DA built-in
with two latent variables. (b) Graphic presenting the predictive accuracies of six different biomarker
models with an increasing number of features. The red dot specifies the highest accuracy for the
100-feature panel of Model 6. (c) ROC curve for selected biomarker Model 6. (d) The predicted
class probabilities of the training set of samples using selected biomarker Model 6 (accuracy: 92.4%;
sensitivity: 98.3%; specificity: 86.4%)—on the left side, and the predicted scores for the test set of
samples (accuracy: 83.9%; sensitivity: 79.4%; specificity: 90.9%)—on the right side. The classification
boundary is located at the center (x = 0.5, the dotted line). Misclassified samples in both training and
test sets are shown as empty circles, blue for the BD group and green for the C group.
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To estimate the validity of the model created with the training set of samples, ROC
curve-based model evaluation (Tester) analysis (using the PLS-DA algorithm with two
latent variables) was performed with the test set of samples (consisting of a total of 56 sam-
ples: 29 BD and 27 C). The results of this analysis are presented in Figure 4d on the
right side. There, the average of the predicted class probabilities of samples across the
100 cross-validations using the created classifier is shown. As the algorithm uses a balanced
sub-sampling approach, the classification boundary is located at the center (x = 0.5, the
dotted line).

3. Discussion

Based on our knowledge, only several plasma and serum lipidomics studies of BD
applying LC coupled to MS are known so far [39–45,50]. In this study, we explored an
untargeted analysis of extracted lipids from the serum samples of Serbian BD patients and
healthy controls (C) to reveal statistically important differences in their lipid profiles with
the main aim of identifying potential biomarker candidates for BD. Our results indicated
five of the most affected lipid classes: GP, SP, GL, FA, and ST, with different distributions
in the serum lipid profiles of the BD and C groups (Figure 2a and Table 2). GPs are the
most abundant among differential lipids, with the dominant prevalence of PC-O and PC
subclasses and significantly less presence of PA, PS, LPS, and LPC subclasses, as displayed
in Table 2 and Figures 2 and 3. SPs include the dominant presence of SM and significantly
less presence of Cer subclasses, while GLs consist of dominant TG and negligible presence
of DG lipids (Figures 2 and 3). All these lipid classes have decreased concentrations in BD
patients compared to controls, except in SPs’ subclass of ceramides, which corresponds to Cer
34:1;O2, with increased concentrations in BD patients compared to controls (Figures 2 and 3).
Accordingly, Schwarz et al. (2008) reported that white matter from postmortem brain tissue
revealed increased levels of C36:1, C36:2, and C34:1 ceramides compared to controls [38].
Brunkhorst-Kanaan et al. (2021) also documented increased concentrations of C16:0, C18:0,
C20:0, C22:0, C24:0, C24:1 ceramides, glucosylceramide C24:1, and lactosylceramide C24:0
in the serum of BD patients compared to controls [50]. This research group suggested aging
as a risk factor for BD because the increased level of long-chain ceramides is positively
correlated with age. Moreover, Li et al. (2023) recently conducted a multi-omics analysis of
the medicament-induced model of bipolar disorder in zebrafish to explore the molecular
mechanism of altered metabolic pathways in this disease [51]. Their lipidomics study
showed increased levels of FA, SP (SM, glycosylceramides (GlyCer)), and GP (PC, PE,
LPC), while Cer was significantly reduced in the brains of the BD group compared to the
controls. These results were explained by the lack of conversion of FA to Cer and further
transformation to SM and GlyCer in SP metabolism. The decreased level of ceramides
agrees with our results regarding the majority of ceramides except for one subclass, Cer
34:1;O2.

Ribeiro et al. (2017) demonstrated that treated patients with BD type I exhibited
decreased levels of GP in serum compared to the healthy control (HC) group, although they
increased levels of SP and GL in BD, which is contrary to our results [44]. Knowles et al.
(2017) identified a peripheral biomarker, serum-based phosphatidylinositol, which shows a
significant correlation with BD risk [52]. This research group confirmed a decrease in GP lev-
els compared to controls, which is also in agreement with our results [52]. Guo et al. (2022)
recently reported the quantitative analysis of plasma lipid composition in adult women
with BD and controls (HCs), indicating decreased levels of phosphatidylethanolamines,
phosphatidylserine, and SM in BD compared to HC, which reflects a negative correlation
of these lipids with the severity of psychotic, affective, or mania symptoms [39,40,53,54].
Previously reported research also showed that plasma SM has an inverse correlation with
depressive symptoms [55]. Costa et al. (2023) recently explored the lipidomic profiles of
plasma samples from drug-naïve patients in the schizophrenia group (SZ), bipolar disor-
der (BD), and healthy control groups and compared them crosswise [45]. Their results
confirmed alterations in lipid pathways, such as the metabolism of GP, SP, and GL. When
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the lipidomic profiles of plasma BD and control groups were quantitatively compared,
increased levels of GL and SP, mostly SMs, as well as some species of GP and ST, were
identified. These results are not in agreement with our results, as well as with the majority
of reported studies, and they were explained by the early stages of the disease in the
patients’ samples [45].

Lipids have important multifunctional biological functions, including structural in-
tegrity and fluidity of membranes and transmembrane signaling in the brain that are
closely correlated to the processes of inflammation, apoptosis, proliferation, and differen-
tiation [56,57], and dysfunction of lipid metabolism has been emphasized in psychiatric
disorders, including BD [39,58]. The majority of lipid molecules implicated in SP (SM, Cer)
and GP (PE, PC-O, PC, LPC, and LPE) metabolism were reduced, but only one ceramide
subclass (Cer 34:1;O2) involving the SP metabolism was enhanced in the serum of the
BD group relative to the control group. SPs and GPs are the main components of brain
membranes. While SMs play a crucial role in transmembrane signaling, GPs (PE, PC, PC-O,
LPC, and LPE) have a major role in neuronal membrane integrity and fluidity [52,59]. Our
results obviously pointed to the alteration in GP and SP pathways, indicating disruption of
lipid homeostasis in the brain, including alteration of membrane structure and intracellular
signaling pathways that are responsible for the pathology of BD.

SP metabolism provides the synthesis of many important lipid molecules catalyzed
by numerous enzymes through either de novo or the salvage pathways [59]. De novo SP
metabolism starts first with the condensation of L-serine and a fatty-acyl CoA (palmitoyl-
CoA, myristoyl-CoA, or stearoyl-CoA) producing 3-ketosphinganine, which is then reduced
to dihydrosphingosine and further acylated to dihydroceramide (Figure 5). Finally, di-
hydroceramide is desaturated to ceramide and is also produced by salvage pathway by
decomposition of complex glycolipids, hydrolysis of SMs, and acylation of sphingosine
(Figure 5). Ceramides are also correlated with GP metabolism because, in the reaction
with PC catalyzed by the enzyme sphingomyelinase (SMase), they are transformed into
SMs and DG. Actually, GP metabolism begins with glycerol-3-phosphate and fatty-acyl
CoA, as well as DG and fatty-acyl CoA, to produce PA, which is further transformed into
all other GP species, such as PS, PE, PC, LPC, and LPS (Figure 5). Our results identified
that Cer, FA, LPC, PC, PC O-, and TG contain saturated and unsaturated fatty acids; PA
contains only saturated fatty acids; and DG, LPS, PS, and SM contain only unsaturated
fatty acids. Therefore, there is probably a defect in the transformation of DG with fatty-
acyl CoA to the PA and further on to other phospholipids (PC, PS, LPS, and LPC) in GP
metabolism. Also, the increased level of only Cer 34:1;O2 species from all GP classes
indicated increased activity of ceramide synthases (CerS) that catalyze the acylation of
dihydrosphingosine to dihydroceramide, especially its CerS5 and six isoforms that have
specificity for the fatty-acyl C14–C16 CoA [59] (Figure 5). Ceramides are like the second
messenger, with the important role of regulating the activity of numerous proteins, among
which is phospholipase A2 [59].

Our results obviously pointed to the alteration of glycerophospholipid metabolism –
GP, sphingolipids – SP, and glycerolipids – GL pathways, which might be correlated with
the alteration of enzyme phospholipase A2 (PLA2) activity, which is responsible for the
decomposition of glycerophospholipids into fatty acids. It has been shown that PLA2
activity is increased in schizophrenia (SCZ) and BD with ultra-high risk for psychosis
patients, and it is correlated with changes in neuronal function contributing to affective
and cognitive symptoms [45]. Putative lipid biomarkers determined in our lipidomics
study were considered through GP and SP metabolic pathways with the aim to indicate
their importance as well as the enzymes they regulate to emphasize the possibility of their
consideration in further studies of a universal set of biomarkers.

At last, but not at least, there are some limitations of this study, as it is an untargeted
lipidomics study applying liquid chromatography coupled with high-resolution mass
spectrometry (LC-HRMS) that was carried out to accomplish lipidomic profiles of serum
samples from patients with BD and healthy controls. Firstly, the validation of potential
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biomarkers was not done with an independent group. Secondly, the obtained results
were not acquired by a fully quantitative and validated method. Thirdly, the structures of
putative biomarkers were not confirmed using reference material. Fourthly, the BD patients
included in this study were under medical therapy of antipsychotics of the first and the
second generation.
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Figure 5. Major pathways in sphingolipid metabolism (de novo and salvage pathways) and
glycerophospholipid metabolism. Cer, ceramides; SM, sphingomyelins; PC, phopshatidylcholine;
PE, phopshatidylethanolamine; PS, phosphatidylserine; LPS, lysophosphatidylserine; LPC, lyso-
phosphatidylcholine; DG, diacylglicerols; TG, triacylglicerols; G-3P, glycerol-3-phosphate; PA, phos-
phatidic acid; CDP-DG, cytidine diphosphate-diacylglycerol; PG, phosphatidylglycerol; CL, cardi-
olipin. Enzymes: SPT, serine palmitoyltransferase; KDSR, NADH-dependent 3-keto-sphinganine
reductase; CerS, ceramide synthases; DDase, dihydroceramide desaturase; CDase, ceramidase; SMase,
sphingomyelinase; SMS, sphingomyelin synthase; GlcT-1, glucosylceramide synthase.

4. Materials and Methods
4.1. Sample and Sample Preparation

This study was approved by the Ethics Committee of the Special Hospital for Psychi-
atric Diseases “Kovin,” the University of Belgrade—Faculty of Chemistry, and the Blood
Transfusion Institute of Serbia. Blood samples of selected BD patients under medical treat-
ment were obtained from the Special Hospital for Psychiatric Diseases “Kovin,” while
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samples of healthy controls were provided by the Blood Transfusion Institute. All partic-
ipants or their caretakers provided written consent before their enrollment in this study.
A total of 31 BD patients, including 13 males and 18 females, with ages between 20 and
74 years, were analyzed in this study. The control group comprised 31 healthy volunteers,
males (16) and females (15), with ages between 24 and 54 years old. A total of 2 patients
were using antipsychotics of the first generation (chloropromazine, levomepromazine),
and 24 patients were using antipsychotics of the second generation (aripiprazole, clozap-
ine, quetiapine, olanzapine, risperidone), 5 patients were using anxiolytics (alprazolam,
clonazepam, diazepam, lorazepam, prazepam), and healthy controls were under no med-
ical therapy. Blood samples were collected from the patients and healthy controls in the
morning hours, before the first meal. The blood samples were kept on ice for one hour,
centrifuged, and then the sera collected from the supernatants were stored at −80 ◦C. The
maximum period of storage before analysis was up to two weeks.

4.2. Chemicals

Chloroform (for HPLC, >99.8%, amylene stabilized, Sigma-Aldrich, France), methanol
(LC–MS, Chromasolv™, ≥99.9%, Honeywell, Germany), 2-propanol (LiChrosolv®, hyper-
grade for LC–MS, Merck, Darmstadt, Germany), acetonitrile (LiChrosolv®, hypergrade for
LC–MS, Merck, Darmstadt, Germany), and deionized water (18.2 MΩcm−1, Barnstead™
Smart2Pure™ Water Purification System, Thermo Scientific™, USA) were used for lipids’
extraction, dissolution, and preparation of the mobile phases for the LC–HRMS analyses.
Ammonium formate (puriss. p.a., eluent additive for LC–MS, Fluka, USA), formic acid
(eluent additive for LC–MS, Fluka Analytical), and ammonium acetate (Optima® LC/MS,
Fisher Chemical, USA) were used for the preparation of eluent additives for LC–HRMS.

4.3. Lipidomics Analysis
4.3.1. Lipid Extraction from Blood Serum Samples

Lipids were extracted from serum samples according to the methodology described
by O’Brien et al. [60]. A total of 100 µL of serum sample thawed on ice were transferred
to a 2.0 mL Eppendorf tube, and 100 µL of chloroform and 100 µL of methanol, both ice
cold, were added. This mixture was mixed (vortex, MX-S) for 2 min, left to stand at −4 ◦C
for 30 min, and then centrifuged for 15 min at 15,000 g (DLAB Centrifuge D2012 Plus) to
yield the upper (methanol/aqueous fraction) and lower phases (chloroform/lipid fraction).
After centrifugation, 75 µL aliquots of the lower phase, including lipids and chloroform,
were carefully sampled into 1.5 mL Eppendorf tubes, and the solvent was evaporated
till dryness in the mild nitrogen stream. The remaining components were resuspended
in 1 mL of the mixture 2-propanol—acetonitrile—deionized water (2:1:1, v/v/v) at room
temperature, transferred into 2 mL glass vials, and subjected to the LC–HRMS analysis.
To detect possible sources of instrumental variation in the batch analysis of the samples, a
third group of samples was analyzed, named quality control (QC), consisting of a pool of
all samples (BD and HC), prepared following the same procedure using a pooled serum
sample. Solvent blank samples, prepared following the same procedure using deionized
water, were injected at the beginning and at the end of each batch to monitor background
signals and contamination. A personal computer system running Agilent MassHunter
software (revisions B.06.01 and B.07.00) was used for data acquisition and processing,
respectively. All serum samples were prepared in triplicate.

4.3.2. Liquid Chromatography–High-Resolution Mass Spectrometry
(LC–HRMS) Measurements

Untargeted lipidomics was performed by injection of prepared samples into the same
analyzing system used in our previous studies [61,62], consisting of a liquid chromatograph
(1290 Infinity LC system; Agilent Technologies, Waldbronn, Germany) with a quaternary
pump, a column oven, and an autosampler connected to the Quadrupole Time-of-Flight
mass detector (6550 iFunnel Q-TOF MS, Agilent Technologies; Santa Clara, CA, USA)
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equipped with a dual spray Agilent Jet Stream (AJS) electrospray ion source. Separa-
tion of lipid compounds was carried out using a Zorbax Eclipse Plus C18 column RRHD
(100 mm × 2.1 mm; 1.8 µm, Agilent Technologies). The mobile phase was composed of
solvents A: water/ACN (40:60, v/v) and B: IPA/ACN (90:10, v/v); both solvents contained
10 mmolmL−1 ammonium formate and 0.1% formic acid (positive ionization mode) or
10 m mmolmL−1 ammonium acetate (negative ionization mode). The following gradi-
ent program was used: 0–2 min 15–30% B, 2–2.5 min 30–48% B, 2.5–8.5 min 48–72% B,
8.5–11.5 min 72–99% B, 11.5–12 min 99% B, 12.0–12.1 min 99–15% B, 12.1–15 min 15% B.
The mobile phase flow rate was 0.60 mLmin−1, the column temperature was 60 ◦C, and the
injection volume of samples and blanks was 2 µL (positive ionization mode) or 4 µL (nega-
tive ionization mode). After separation, the lipids were analyzed using a mass detector.
Positive and negative ion modes were recorded separately. The instrument was operated
in MS mode in the m/z range of 80–1700 under the following conditions: capillary voltage,
3500 V, fragmentor voltage, 175 V, nozzle voltage, 1000 V, skimmer 1, 65 V, octupole RF
peak, 750 V, desolvation gas (nitrogen) temperature, 200 ◦C, desolvation gas (nitrogen)
flow, 14 Lmin−1, nitrogen flow, 11 Lmin−1. Ions m/z 121.0508 and 922.0097 in positive
ion mode and 112.9855, 966.0007, and 1033.9881 in negative ion mode were used as a lock
mass for accurate mass measurements. Samples were recorded in consecutive batches
for both positive and negative ionization modes, always after cleaning the ion source. To
reduce the impact of small variations in instrument sensitivity during the measurements,
samples were randomly analyzed, and QC samples, prepared by pooling aliquots from
all serum specimens, were injected before the first and after every nine injections of lipid
extract samples to monitor the system stability. Solvents blank samples were injected at
the beginning and end of each batch to monitor background signals and contamination. A
personal computer system running Agilent MassHunter software (revisions B.06.01 and
B.07.00) was used for data acquisition and processing, respectively.

4.4. LC–HRMS Data Processing and Statistical Analysis

The raw data (d) were converted to mzData format for peak picking using Agilent
MassHunter software (revision B.07.00). Peak detection and retention-time alignment
were performed using the XCMS online platform within the R statistical programming
environment [63–65].

For the collected data, optimized XCMS parameters include centwave feature detection,
orbiwarp retention time correction, a minimum fraction of samples in one group to be a valid
group = 0.50, p-value thresholds for patients versus control samples = 0.05, isotopic ppm
error = 15, the width of overlapping m/z slices (mzwid) = 0.015, bandwidth grouping (bw) = 5,
minimum peak width = 5 s, maximum peak width = 20 s. Thus, the raw data table of retention
times, m/z values, and peak intensities were exported for further processing—cleaning of
background noise, isotopic, and unrelated ions according to the data obtained by the
Molecular Feature Extraction (MFE) tool in the MassHunter Qualitative Analysis Software
(revision B.07.00, Agilent Technologies). For data extraction, the pre-set “small molecules
(chromatographic)” algorithm was applied, with 200 counts as the limit for the background
noise. In addition, the adduct settings (H+, Na+, K+, neutral loss of water, and NH4

+) for
positive ionization were applied due to the ammonium formate in the mobile phase, and
(H−, CH3COO−) for negative ionization due to the ammonium acetate in the mobile phase.
The option for “salt-dominated ion” was also applied.

The impact of possible small variations in instrument sensitivity during the mea-
surements was checked by intraday and interday CV for the filtered m/z (rt) values in
the QC samples. Since their coefficients of variation (CV) were under 30%, variations in
instrument sensitivity were considered not to affect the results, so there was no need for
further normalization of the samples.

The resulting table of retention times, m/z values, and peak intensities was organized
into a single matrix containing the samples (cases) in the rows and the m/z (rt) values in the
columns (variables), with additional categorical variables for rows referring to the classifica-
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tion of the samples (class variable: BD—bipolar disorder patients and C—healthy controls).
The initial data set matrix was constructed with 186 chromatograms (93 for the BD group
and a total of 31 patients, and 93 for the C group—31 individuals) and 201 variables for
combined negative–positive ions and analyzed by principal component analysis (PCA)
using the MetaboAnalyst 5.0 software platform (Xia Lab, McGill University, Montréal, QC,
Canada, https://www.metaboanalyst.ca/, accessed on 10 August 2023) [66]. This unsu-
pervised analysis was performed using the five principal components for discrimination
of all analyzed samples, using no further data filtering, no data normalization, no data
transformation, and autoscaling (mean-centered and divided by the standard deviation for
each variable) for data pre-processing.

After the removal of outlier samples identified by PCA (5 BD samples from 3 individ-
uals and 7 C samples from 4 individuals), as those were found outside the corresponding
95% Hoteling’s T2 confidence ellipse, the initial data set was randomly divided into two
sets: the training set, which accounted for approximately 2/3 of the complete number of
samples in the data table, keeping the same ratio of the number of class samples as an initial
data set (stratify option). The test data set was used for external validation of the PLS-DA
and the ROC models that incorporated the remaining (approximately 1/3 of the complete)
samples of the initial data set. As a result of the splitting procedure, the training data set
consisted of 118 total samples: 59 BD samples from 21 individuals and 59 C samples from
20 individuals, whereas the test data set included 56 samples, among which 29 were BD
samples from 10 individuals and 27 C samples from 10 individuals. All samples in both
data sets are grouped as triplicates for each patient, and their allocation inside the data set
was assigned to a specific categorical variable [19].

The supervised Partial Least Squares Discriminant Analysis (PLS-DA) was performed
on the training data set using the MetaboAnalyst 5.0 software platform (Xia Lab, McGill
University, Montréal, QC, Canada, https://www.metaboanalyst.ca/) [66]. For discrimi-
nation of these samples, the five principal components were used, with no further data
filtering, no data normalization, no data transformation, and autoscaling (mean-centered
and divided by the standard deviation for each variable) for data pre-processing. A 10-fold
CV was applied as the cross-validation (CV) method, and accuracy and variable impor-
tance in projection (VIP) were used to measure performance and importance features,
respectively.

The lipid molecules were assigned based on accurate mass measurements and database
s—LIPID MAPS Structure Database (LMSD) (https://www.lipidmaps.org/, accessed on 21
August 2023) [48] and Human Metabolome Database (HMDB) (https://hmdb.ca/, accessed
on 21 August 2023) [49].

4.5. Identification of Potential Metabolite Biomarkers

For biomarker prediction, evaluation, and validation, the multivariate receiver op-
erating characteristic (ROC) tests on the training and test data sets, respectively (with all
201 variables), were performed in MetaboAnalyst 5.0 (Xia Lab, McGill University, Montréal,
QC, Canada, https://www.metaboanalyst.ca/) [66]. Specifically, for biomarker predic-
tion, applied analysis—multivariate exploratory ROC curve analysis (Explorer) performs
automated important feature identification and performance evaluation. The ROC test
classification method was PLS-DA, the feature ranking method was PLS-DA built-in with
two latent variables, and the ROC plots were generated by Monte Carlo cross-validation
(MCCV) using balanced sub-sampling. In each MCCV, two-thirds (2/3) of the samples
are employed to evaluate the feature’s importance. The top important features (2, 3, 5,
10, . . ., 100 as a maximum) are then exploited to build the classification models, which
are validated on the remaining 1/3 of the samples. The procedure is replicated multiple
times to calculate the performance and the confidence interval of each model. Multiple
algorithms are available for classification and feature ranking methods. For our data, the
classification method selected was PLS-DA, and the feature ranking method selected was
the PLS-DA built-in algorithm with two latent variables (LV) [67].

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.lipidmaps.org/
https://hmdb.ca/
https://www.metaboanalyst.ca/
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For the evaluation and validation of the created ROC curve-based model, the PLS-DA
algorithm with two latent variables was used. Samples from the test subset were excluded
for external validation purposes. To obtain a decent ROC curve for the validation, the test
set contained a balanced number of samples from both groups, as recommended (Xia Lab,
McGill University, Montréal, QC, Canada, https://www.metaboanalyst.ca/) [66].

5. Conclusions

Although the application of MS-based untargeted lipidomics in the BD study is still
mostly unknown, alterations of glycerophospholipids, sphingophospholipids, and glyc-
erolipids indicated an important role of lipid pathways in the pathogenesis of bipolar
disorder. The BD-treated patient’s lipid metabolism was definitively altered, with de-
creased levels of the majority of the most affected lipid classes: glycerophospholipids
(GP), sphingolipids (SP), glycerolipids (GL), sterol lipids (ST), and fatty acyls (FA). GPs
are the most abundant among differential lipids. From GPs, only one ceramide subclass,
Cer 34:1;O2, which is involved in the SP metabolism, was increased in the serum of the
BD group relative to controls. The increased level of Cer 34:1;O2 species demonstrated
enhanced activity of ceramide synthases (CerS), actually CerS5 and six isoforms that have
specificity for the fatty-acyl C14–C16 CoA. Ceramides also indicated probably increased ac-
tivity of phospholipase A2, responsible for the decomposition of glycerophospholipids into
fatty acids and their transformation into other lipids. Our results of the serum lipidomic
profile of BD patients were mostly in agreement with previously published lipidomics BD
data. To achieve a universal set of biomarkers, the key requirement is to explore a consoli-
dated analysis of serum and plasma samples of different geographical and ethnic origins,
including larger sample sizes and a wider age range, as well as samples of drug-naïve
BD patients, to remove doubts about which biomarkers are the result of the disease and
which are the result of drugs used in medical treatment. A detailed investigation of the bio-
chemical alterations in BD lipid metabolism, validation of differential lipids using targeted
lipidomics, and the development of novel diagnostic tools are necessary for a complete
understanding of lipid pathways and their application in the diagnosis and improvement
of BD treatments.
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