

Society of Chemists and Technologists of Macedonia

Сојуз на хемичарите и технолозите на Македонија

26th Congress of SCTM with international participation

BOOK of ABSTRACTS

20–23 September 2023 Metropol Lake Resort Ohrid, R. Macedonia

$\begin{array}{l} \textbf{PHYSICAL, STRUCTURAL\ CHEMISTRY, SPECTROSCOPY\ AND} \\ \textbf{ELECTROCHEMISTRY} \end{array}$

POSTER PRESENTATION

PSSE P-1	I. Dimitrievska, A. Grozdanov, P. PaunovicComprehensive Structural Analysis of Gamma Irradiated Carbon Nanomaterials	129
PSSE P-2	A. Leniart, MM. Dzemidovich, A. Kosińska, B. Rudolf and <u>S. Skrzypek</u> The First Electrochemical Studies of Metallocarbonyl Complexes with Imides	130
PSSE P-3	J. Sela, L. Stojanov, M. Bukleski, A. Reka, S. Dimitrovska-Lazova, V. Mirčeski, S. Aleksovska Cyclic Voltammetry Study of DMAPbI ₃ Perovskite Material	131
PSSE P-4	<u>K. Najkov</u> , V. Stefov, V. Koleva, M. Najdoski Structural, Spectroscopic and Thermal Analysis of Hydrogenphosphate Salts $Ca_2MH_7(PO_4)a_2H_2O\ (M=K^+,NH^-)$	132
PSSE P-5	R. Idrizovska, M. Organdjieva, L. Stojanov and V. Mirceski Oxidation Mechanism of Dopamine and Serotonin Using Cyclic and Square-Wave Voltammetry	133
PSSE P-6	I. Škugor Rončević, M. Buzuk, M. Buljac, J. Dugeč, and N. Vladislavić Micro-Dendritic Electrodeposited Bismuth and Food Coloring Sensing	134
PSSE P-7	S. I. Stevanović, D.L. Milošević, D. V. Tripković, N.D. Nikolić, V. R. Ćosović and V. M. Maksimović Design of PtSnZn Nanocatalysts for Anodic Reactions in Fuel Cells	135
PSSE P-8	A. Cvetkovski and E. Drakalska Correlation of H-bonding Distances and Strengths in API Solvates Case Study on Nitrofurantoin and Pyridoxine	136
PSSE P-9	T. Tushev, S. Harizanova, R. Stoyanova and V. Koleva Phosphate-Based Mixed Polyanion Compounds as Promising Electrode Materials for Post-Lithium Ion Batteries	137
PSSE P-10	A. Simović and J. Bajat Pinus Nigra Essential Oil and Its Main Active Components as Sustainable Compounds for Mitigation of Carbon Steel Corrosion	138
PSSE P-11	N.D. Nikolić, J.D. Lović, V.M. Maksimović and S.I. Stevanović Correlation Between Morphology and Structure of Galvanostatically Electrodeposited Tin Dendrites	139
PSSE P-12	J.D. Lović, N.D. Nikolić, P. M. Živković, M. Stevanović Facile synthesis of Sn-Pd catalysts with high performances for ethanol electro-oxidation in alkaline medium	140
PSSE P-13	V. S. Cvetković, N. M. Petrović, D. Feldhaus, L. Prasakti, B. Friedrich, J. N. Jovićević Greenhouse gas emission from the rare earth metals electrolysis	141
PSSE P-14	V. S. Cvetković, N. D. Nikolić, M. G. Košević, T. S. Barudžija, S. B. Dimitrijević and J. N. Jovićević	
	Copper Electrodeposition onto Palladium from a Deep Eutectic System Based on Choline Chloride	142
PSSE P-15	D. L. Milošević, S. I. Stevanović and D. V. Tripković Formic Acid Electropyidation on Cr. Supported Platinum Thin Film Catalyst	1/13

PSSE P-14

Copper Electrodeposition onto Palladium from a Deep Eutectic System Based on Choline Chloride

V. S. Cvetković,^{a*} N. D. Nikolić,^a M. G. Košević,^a T. S. Barudžija,^b S. B. Dimitrijević^c and J. N. Jovićević^a

^aDepartment of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; ^bInstitute for Nuclear Sciences Vinča, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;

^cMining and Metallurgy Institute, Zelenibulevar 35, Bor, Serbia

*v.cvetkovic@iht.bg.ac.rs

Recently, there has been an increasing interest in developing nonaqueous electrolytes which have been widely employed as an alternative media for a range of metals and metal alloys electrodepositions. A promising and new class of electrolytes among ionic liquids (ILs) are deep eutectic solvents (DESs)¹. The purpose of the copper deposition study from DESs is the application of copper coating and copper alloys in both, industry and fundamental research. In this work, the electrochemical deposition of copper onto palladium working substrate from ChCl/EG (1:2 ratio) DES electrolyte at 50°C was investigated. Additionally, the Cu(II) electroreduction process was studied by potentiodynamic measurements, cyclic voltammetry, chronoamperometry, in the electrolytes with different concentrations of Cu(II) ions ranging from 0.1 M to 0.5 M.

The cyclic voltammetry results indicated that the bulk deposition of Cu(II) begins to occur at around -0.080~V vs. Cu. It was found that copper deposition onto the Pd cathode from ChCl:EG electrolyte under potentiostatic conditions is achievable.

Data collected from X-ray diffraction (XRD) analysis proved that the cathodic deposits are composed of Cu and CuPd intermetallic. CuPd alloys with different Pd-Cu ratios were prepared by constant potential of -0.100~V vs. Cu from ChCl/EG containing 0.1 M and 0.5 M Cu(II). It is worth noting that the X-ray data indicated that the composition of the produced Pd-Cu films could be varied by changing the concentration of Cu(II) ions in the electrolyte or changing the deposition mode.

Keywords: deep eutectic solvents(DESs), Cu-Pd alloys, electrodeposition

Acknowledgement: This research has been financially supported by the Ministry of Science, Technological Development and Innovation of Republic of Serbia (Contract No: 451-03-47/2023- 01/200026).

References:

1. Geng, T.; Zeller, S.J.; Kibler, L.A.; Ceblin, M.U.; Jacob, T. Electrodeposition of Cu onto Au (111) from Deep Eutectic Solvents: Molar Ratio of Salt and Hydrogen Bond Donor, *ChemElectroChem.* 2022, 9, e202101283. https://doi.org/10.1002/celc.202101283.