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1 Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade,
Studentski trg 12-16, 11000 Belgrade, Serbia; katarina.simic@ihtm.bg.ac.rs (K.S.); ninat@chem.bg.ac.rs (N.T.);
dgodjev@chem.bg.ac.rs (D.G.)

2 Institute of General and Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
zmiladinovic@iofh.bg.ac.rs

3 University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia;
snezanat@chem.bg.ac.rs (S.T.)

4 University of Belgrade - Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26,
11000 Belgrade, Serbia

5 Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
gavrilovicaleksandra74@gmail.com (A.G.); silvana.jovanovic555@gmail.com (S.J.)

6 Institute of Chemistry, Organic Chemistry Department, State University of Campinas,
Campinas 13083-970, SP, Brazil

* Correspondence: natasa.avramovic@med.bg.ac.rs (N.A.); borism@chem.bg.ac.rs (B.M.);
Tel.: +381-113-607-131 (N.A.); +381-112-630-477 (B.M.)

Abstract: Bipolar disorder (BD) is a brain disorder that causes changes in a person’s mood, energy,
and ability to function. It has a prevalence of 60 million people worldwide, and it is among the
top 20 diseases with the highest global burden. The complexity of this disease, including diverse
genetic, environmental, and biochemical factors, and diagnoses based on the subjective recognition
of symptoms without any clinical test of biomarker identification create significant difficulties in
understanding and diagnosing BD. A 1H-NMR-based metabolomic study applying chemometrics of
serum samples of Serbian patients with BD (33) and healthy controls (39) was explored, providing
the identification of 22 metabolites for this disease. A biomarker set including threonine, aspartate,
gamma-aminobutyric acid, 2-hydroxybutyric acid, serine, and mannose was established for the
first time in BD serum samples by an NMR-based metabolomics study. Six identified metabolites
(3-hydroxybutyric acid, arginine, lysine, tyrosine, phenylalanine, and glycerol) are in agreement with
the previously determined NMR-based sets of serum biomarkers in Brazilian and/or Chinese patient
samples. The same established metabolites (lactate, alanine, valine, leucine, isoleucine, glutamine,
glutamate, glucose, and choline) in three different ethnic and geographic origins (Serbia, Brazil, and
China) might have a crucial role in the realization of a universal set of NMR biomarkers for BD.

Keywords: bipolar disorder; metabolomics; biomarkers; NMR; chemometrics; serum metabolites

1. Introduction

Bipolar disorder (BD) is a mental disease that includes episodes of mania, depression,
and euthymia, and it affects 1–3% of the population worldwide [1–4]. Bipolar disorder
commonly runs in families: 80 to 90 percent of individuals with bipolar disorder have a
relative with bipolar disorder or depression. Environmental factors such as stress, sleep
disruption, and drugs and alcohol may trigger mood episodes in vulnerable people. Though
the specific causes of bipolar disorder within the brain are unclear, an imbalance in brain
chemicals is believed to lead to dysregulated brain activity. The average age of onset is
25 years old. Due to the involvement of diverse genetic, environmental, and biochemical
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factors, BD is a heterogenous illness for which diagnosis exclusively relies on the subjective
recognition of symptoms without any objective methods such as the identification of
biomarkers. Accordingly, inadequate treatments and deficient clinical outcomes are very
often seen in patients with BD [5]. Early and precise diagnosis of BD is pivotal to improving
the clinical treatment of BD patients [6]. In order to overcome that barrier, the identification
of objective biomarkers obviously has a crucial and challenging role.

Metabolomics studies the alteration of small molecule metabolites in cells, tissues, and
body fluids and explores the biochemical pathways related to the pathogenesis of disease
while determining the objective biomarkers [7]. In addition to genomics, proteomics, and
lipidomics, metabolomics is a valuable research method assessed by nuclear magnetic
resonance spectroscopy (NMR), gas chromatography coupled to mass spectrometry (GC-
MS), and liquid chromatography coupled to mass spectrometry (LC-MS) [8–12]. NMR
spectroscopy is the main tool to explore metabolites due to its many advantages, such as
the simple preparation of samples, high reproducibility supporting extensive metabolome
analysis, and the possibility to analyze in vivo and ex vivo samples, which is crucial for
clinical research [9–17]. The state-of-the-art advantages of NMR-based metabolomics is
reflected in the possibility of its application in precision medicine through personalized
medical treatment, reliable monitoring of treatment response, and clinical outcomes. Blood
and urine samples can be obtained at minimal risk and cost; they are easily accessible and
ideal for the identification and determination of new biomarkers [18]. In the last decade,
a panel of potential biomarkers was explored and identified in biological fluids (blood,
urine, cerebrospinal fluid) of BD patients applying 1H-NMR-based metabolomics [19–30].
Reported metabolomics studies demonstrated that diverse BD metabolites are connected
with their altered biochemical pathways, including mitochondrial/energy metabolism,
oxidative stress, amino acid metabolism, and lipid metabolism.

In this work, we studied the 1H-NMR-based metabolomics of human blood serum
of BD patients in Serbia in order to identify alterations of metabolites. Our goal was to
confirm the difference between BD patients and healthy control groups based on their
metabolic profiles with the intention of identifying potential biomarkers for BD diagnosis
and verifying the possibility of their use in personalized medicine. Additionally, our aim
was to establish a better comprehension of biochemical pathways affected by BD.

2. Materials and Methods
2.1. Sampling and Sample Preparation

This study was approved by the Ethics Committee of the Special Hospital for Psy-
chiatric Diseases “Kovin”, the University of Belgrade—Faculty of Chemistry, and the
Blood Transfusion Institute of Serbia. Blood samples of selected BD patients under medi-
cal treatment were obtained from the Special Hospital for Psychiatric Diseases “Kovin”,
while samples of healthy controls were provided by the Blood Transfusion Institute. All
participants or their caretakers provided written consent prior to their enrollment in this
study. Thirty-three BD patients, including 14 males and 19 females, with ages between
20 and 74 years, were analyzed in this research. The control group comprised 39 healthy
volunteers, males (27) and females (12), with ages between 23 to 60 years old. The blood
samples were collected in triplicates. They were kept on ice for one hour, centrifuged, and
then the sera collected from supernatants were stored at −80 ◦C. The maximum period of
storage before assays was up to two weeks. Serum samples were thawed and diluted with
D2O (vol., 1:1) prior to NMR analyses.

2.2. NMR Analysis

All NMR experiments were carried out on a Bruker Avance III NMR spectrometer
(Bruker BioSpin, Rheinstetten, Germany) operating at 500.26 MHz for 1H, using BBI probe
head and at temperature of 298 K. A one-dimensional 1H-NMR NOESY spectrum with
presaturation during relaxation delay was acquired by standard noesypr1d pulse sequence
for each sample. All 1D NOESY spectra were measured with the following acquisition
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parameters: power level for presaturation of 39.67 dB, 32 K complex data points, 128 scans,
and a bandwidth of 15 ppm. The receiver gain was determined automatically before each
measurement. Prior to Fourier transformation, the FIDs were weighed by an exponential
function with the line-broadening factor of 0.3 Hz. The methyl of lactate at 1.33 ppm (3H, 3J
= 7.0 Hz) was used as a referent chemical shift signal. Additionally, 2D experiments TOCSY,
HSQC, and JRES were used for metabolites’ assignment. The TOCSY experiments were
measured by mlevphpr.2 pulse sequence with 2048 complex data points, 512 increments,
32 scans, and mixing time of 160 ms. The HSQC experiment was recorded applying
hsqcetgpprsisp2.2 pulse sequence, with 1024 complex data points, 256 increments, and
120 scans. JRES spectra were measured using jresgpprqf pulse sequence, 16 K complex
data points, 40 increments, and 128 scans. All applied pulse sequences were taken from
the Bruker library. Together with the 2D experiment assignments and interpretation, the
literature and available databases, such as HMDB (Human Metabolome Database), were
used to assist in the assignment of molecules.

2.3. Chemometrics
2.3.1. Software

Data processing in this work was entirely carried out using toolboxes and software
implementations, including custom scripts and codes created and run under MATLAB ver-
sion 9.7 (MathWorks Inc., Natick, MA, USA) [31]. General NMR Analysis Toolbox (GNAT)
version 1.2 [32] was used to read and reprocess 1H NMR, Noesy1d FID files into a MATLAB
workspace. Alignment of all 1H NMR spectra before any further treatment was imple-
mented through Interval Correlation Optimized Shifting (icoshift) version 3.0 beta [33].
Data pretreatment and further chemometrics analysis were accomplished by PLS Toolbox
version 8.9.1 (Eigenvector Research, Inc., Manson, WA, USA) [34].

2.3.2. Reading in Data

A series of recorded Bruker data files was first imported into GNAT Matlab software
package [32], which performed some basic processing steps. The final size of each trans-
formed spectrum was 32 K real data points. Phase correction was also carefully conducted
before data exporting into the Matlab workspace. The dataset object is assembled as a
total number of samples for both classes given in rows and 32,768 of the total number
of observed variables expressed as NMR chemical shifts in columns of the dataset table.
Furthermore, the same dataset object also includes accompanying categorical and class
variables (sample labels, axis scale, response class variable, triplicate grouping variable,
cross-validation index variable, etc.) necessary for further chemometric analysis [35]. As a
result, the data set table comprises 116 samples organized in triplicates from 39 patients
belonging to the ‘Control’ healthy group and 102 samples of triplicates from 34 patients of
the ‘BD’ group of patients, constituting 218 samples overall.

For unsupervised PCA analysis, a complete data set containing all samples in the
data table was utilized. On the other hand, in the case of supervised OPLS-DA analysis,
the initial data set (after the removal of identified outlier samples) was divided into two
parts: the training (calibration) part, which accounts for approximately 2/3 of the complete
number of samples in the data table, keeping the same ratio of the number of class samples
as an initial data set (stratify option); and the test data set used for external validation of
OPLS-DA models that incorporates the remaining (approximately 1/3 of complete) samples
of the initial data set. As a result of the splitting procedure, the training data set consists of
143 total samples: 77 samples from 26 individuals of ‘Control’ group and 66 samples from
22 patients of the ‘BD’ group, whereas the test data set includes 71 samples among which
33 samples from 11 patients of the ‘BD’ group and 38 samples from 13 ‘Control’ group
individuals. All samples in both data sets are grouped as triplicates for each certain patient,
and their allocation inside the data set was assigned to a specific categorical variable [35].
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2.3.3. Peak Alignment

Prerequisite that any chemometric methods of analysis could be applicable to the
NMR spectral data set is so called bilinearity, meaning that each column (if samples are
stored in the rows of a matrix) contains information originating from the same resonant
signal along all the samples in data table [33]. Commonly, misalignment of 1H NMR spectra
was overcome using bucketing or binning techniques for this purpose. However, bucketing
performs a data reduction by grouping spectral responses, since it is not strictly a method
to align data [36]. In addition, observed loadings obtained from fully aligned spectra and
data-reduced spectra clearly demonstrate the benefit of using as high a spectral resolution
as possible since reduced spectra can lead to imprecise or incomplete interpretation [37].
To fulfill this precondition, the alignment of 1H NMR spectra in this work icoshift [33]
alignment procedure was exploited. The median spectrum from the current data set was
chosen as a reference target vector. The shift of the whole spectra according to a reference
signal in the region 5.20 to 5.35 ppm was performed using 4 iterations. All other details
regarding the alignment procedure using icoshift in this work can be found in our previous
publication [35].

2.3.4. Data Pretreatment (Preprocessing)

Before further data treatment, the region between 4.35 and 5.0 ppm (water suppression
signals residuals) was removed from the data set. A first-order polynomial baseline function
was used to baseline the spectra, which were then fitted to regions without peaks and then
subtracted from the original spectra. Normalization was carried out using probabilistic
quotient normalization (PQN) [38]. Results in our previous work also indicate that spectral
regions below 0.17 ppm and above 8 ppm should be excluded [35]. In this way, the variation
originating from these omitted areas was significantly reduced. Overall, the data matrix of
an initial 32 K was reduced to 15,180 data points in the second dimension.

2.3.5. Centering and Scaling

Prior to any modeling, the centering and scaling of data should be performed. Since
the results of any method of centering and scaling depend on the number of samples to
which relate, any centering and scaling were incorporated during model assembling and
subsequent cross-validation.

For centering, the mean centering of each column variable in the data set table that
was used provides a mean vector with the same length as the axis scale of 1H NMR
spectrum. This kind of centering was commonly used prior to Pareto scaling (scaling to
the square root of each variable standard deviation) or scaling to the standard deviation of
each column variable of the data set table (so-called auto-scale centering and scaling). In
addition, so-called class centroid centering, which centers data to the centroid of all classes,
was also used for further comparison and analysis in conjunction with pooled standard
deviation [34,35,39].

Class centroid centering and scaling are useful for centering and scaling in cases
where the sample subset represents different population subsets, and the subsets are very
unbalanced. Using the class centroid avoids the mean being dominated by the most
populous subset [34]. Pooled standard deviation is a weighted average of the standard
deviation (variances) from the same population subsets. Therefore, the larger subset size
causes a proportionally greater effect/impact on the overall estimate of standard deviation
and consequently scaling results.

Different kinds of scaling, as was shown [37,40,41], have a significant impact on the real
shape of resulting model loadings and consequently could lead to misinterpretation of the true
significance of some spectral variables. Autoscaling (mean-centering and scaling to standard
deviation of all samples’ variables in the data set) gives the same weight to all the spectral
variables because of their now equal variance, and therefore, the resulting loadings indicate
only the variables, which really impact the discrimination between classes [37]. On the other
hand, Wiklund et al. [41] proposed using Pareto scaling rather than UV scaling, suggesting a
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positive impact on the models’ predictive ability as a consequence of a reduction in the noise
and artifacts in the models. Therefore, due to the strong distortion caused by the variance
scaling procedure in the case of autoscaling, Pareto scaling could provide some advantages
over autoscaling regarding the interpretation of the obtained loadings. Nevertheless, it still
keeps the limitation of distorted loadings, and the high variance variables have relatively
more weight in the modeling [37]. In such a situation, the problem of more or less distorted
loading plots as a consequence of different scaling methods could be overcome with back-scale
projection methods proposed by Cloarec et al. [37,40], which will be used for further loading
interpretation in the present work as well [35].

2.3.6. Cross-Validation (CV)

In this study, 7-fold continuous block cross-validation (CV) was used according to the
method adopted and developed in our previous study [35]. The data set is split into the CV
blocks with randomly reordered samples (shuffling) inside each of the blocks preserving
the triplicate structures of samples.

3. Results

A total of 33 patients with BD and 39 healthy control participants were included in
this study. Blood samples from both groups were prepared in triplicate for NMR analyses.
The summary of the collected sample characteristics is presented in Table 1.

Table 1. Demographic characteristics of the sample.

Patients Control Group

Number of samples 33 39
Age in years 20–74 23–60

Sex (male/female) 14/19 27/12
BMI (Body mass index) 18.5–35.5 22.2–33.2

Smoker/non-smoker 22/11 19/20

3.1. Chemometrics

The 1H-NMR data sets were transported into a matrix, and chemometrics analyses
were performed using the GNAT Matlab software package. Spectra phases and baselines
were corrected using automatic options, while 0th-order phase correction was carried out
manually in order to remove the contribution of noise.

3.1.1. Exploratory Analysis

In order to determine the presence of potential outliers or to find optimal methods for
scaling variables in the data set, performing an exploratory analysis was always recom-
mended [42]. However, simple univariate methods are not easily applicable when the data
set has a large number of variables, as in the case of NMR data sets. Nevertheless, univari-
ate statistics such as skewness and kurtosis, or comparative analysis of standard deviations,
were found to be informative to some extent and helpful in determining the method of
scaling or variable regions with significant discrepancy from normal distribution [35].

Figure S1a (Supplementary Information) depicts a comparison of standard deviations
between both classes in the data set. In addition, Figure S1b shows a comparison between
standard deviations that takes into account all samples in the dataset and the pooled
standard deviation determined according to the following expression:

spool =

√
(n1 − 1) · s2

1 + (n2 − 1) · s2
2 + · · ·+ (nm − 1) · s2

m
n1 + n2 + · · ·+ nm − m

(1)

whereas s1, s2, . . . sm represent standard deviations of corresponding variables related to a
particular class; n1, n2, . . . nm represent the number of samples in each of classes and m is
the total number of classes.
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As can be seen from Figure S1b, the most pronounced difference (region specified
with arrows) in standard deviations and the pooled standard deviation could be observed
in the range of 3.62 to 3.73 ppm. This result suggests that the method of scaling could be
of great importance for the understanding of obtained results during further multivariate
modeling. Therefore, for the purpose of this study, we have utilized Pareto scaling, scaling
to the unit variance, and scaling to the pooled variation (pooled standard deviation).

3.1.2. PCA Models

Principal Component Analysis (PCA) is also a well-known unsupervised chemomet-
ric analytical technique that is useful for exploratory data analysis. As a result of their
application, a reduced number of orthogonal principal components representing linear
combinations (weighted average of the original variables) of original variables are ob-
tained [43,44]. Projection of the predictor data matrix on such reduced hyperspace provides
PCA scores values assembled into the matrix with the number of samples given as rows
and the number of latent variables given as columns.

In order to detect reliable outliers, establishing the number of components for each
of the PCA models was necessary [44]. The number of components in each of the PCA
models was determined based on the Scree test and the minimum for Root Mean Squared
Error of Cross-Validation (RMSECV). As a result, all PCA models presented in this work
were composed using six principal components. The PCA model, wherein the data prior
to modeling was mean-centered and Pareto-scaled, captured 91.82% of the total variance.
The separation between classes occurred along the PC 2 component (explained 11.31% of
the total variance), while the first two components explained 73.28% of the total variance
after removing outlier samples. Variance captured by the first two components was given
in Figure S2, accompanied by PC 2 back-scale projected loadings.

PCA model accomplished using class centroid centering and scaling, where all other
preprocessing parameters were the same as for the model with Pareto scaling and mean
centering, was explained 83.93% of total variance by six components. Very distinct class
separation, as in the case of Pareto scaling, was now observed along the PC1 component
(captured 34.94 % of total variance). The results of PCA analysis for this kind of scaling
and centering are presented in Figure S3.

The principal components analysis (PCA) of the 1H-NMR spectra data set, in com-
bination with the plot of Q residuals against T2 Hotelling (influence plot [44]), allowed
us to identify potential outliers. Figure S4a shows the influence plot obtained during the
assembling PCA model preprocessed by class centroid centering and scaling. Clearly, three
scores of BD samples belonging to the same patient (all triplicates) could be identified,
along with a-single sample from the ‘Control’ group. All four samples have distinctive
separation, either regarding Q residual or T2 Hotelling values in comparison to other
samples, for all assembled PCA models regardless of the method of centering and scaling.
A closer examination of the T2 contribution plot for samples of the ‘BD’ group indicates
several chemical shifts area (centered around 0.89, 1.29, 1.58, 2.04, 2.24, 2.75, 4.07, 4.27, 5,23
and 5.23 ppm) where these particular samples show in corresponding 1H NMR spectra
much higher intensity values in comparison to the other samples. Therefore, these outliers
were removed from the data set for the rest of the study.

In addition, the score plot of the resulting PCA model preprocessed using class centroid
and centering (depicted in Figure S4b), after excluding identified outliers, indicates that
variability within the same group of samples triplicates (belonging to the same patient),
is on average much smaller than the variability between the groups of samples of patient.
Therefore, to perform data set splitting for the test and training groups of samples for the
purpose of CV, a triplicate of the same patient should be kept together inside each test or
calibration group of samples, which was implemented throughout this work.

It can be seen from Figures S2a and S3a a good separation between the two main
classes. However, corresponding component loadings for these two models (Figures
S2b and S3b) show a slight discrepancy in the related observed variable’s contribution
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to the given principal component (PC). The reason for such behavior could be found
in the observed tilt angle regarding global scores swarm orientation relative to vertical
PC components for both models (but in opposite directions (see Figure 1)). In order to
interpret the component that is considered relevant, the first step is generally followed by
a rotation of the components that were retained in the model [45,46]. Since the rotations
are always performed in a subspace, the new axes will always explain less variance than
the original components (which are computed to be optimal), but obviously, the part of
variance explained by the total subspace if the rotation is the same as it was before rotation
(only the partition of the variance between components has changed) [45]. Orthogonal
rotation of loadings belonging to the models depicted in Figure 1 was performed according
to the varimax algorithm (Kaiser-Varimax rotation [47]) as a part of the PLS toolbox.

Figure 1. (a) Score plot of PCA model composed with mean centering and Pareto scaling, where
dashed line denotes the direction of cluster shapes for each of the classes, which is tilted slightly left
in comparison to the vertical PC1 component. (b) Score plot of PCA model composed with class
centroid and centering, where dashed line denotes the direction of cluster shapes for each of the
classes, which is tilted slightly right in comparison to the vertical PC2 component. Both models were
assembled after removing identified outliers.

The number of subspace components used as input for varimax rotation was at least
the first two components (PC 1 and PC 2 in the case of the PCA model where the data set
was Pareto-scaled) or all six components of the PCA model where the data set was prepro-
cessed by class centroid centering and scaling. Score plots obtained after the projection of
preprocessed original data onto factor space defined with new loadings were utilized in
order to verify the reliability of the varimax rotation method. The results of rotation analysis
for corresponding loadings are presented in Figure S5 (Supplementary Information). As
can be seen from the figure, both loadings, although related to different model components
(depending on the centering and scaling method), are almost identical regarding each
variable contribution to the particular component. Therefore, the resulting loadings plot
could be used for the more reliable assignation of groups of variables/chemical shifts
(pertaining to metabolites molecules structure) that contribute to the class separation.

A closer inspection of the loadings from Figure S5 reveals that the most positive con-
tribution, corresponding to the class ‘BD’, could be found at the position of 0.856 ppm and
1.246 ppm, as well as in the range between 3.76 and 3.60 ppm, which could be assigned
to the resonances of sugar molecules. Doublet centering around 1.328 ppm (d: 1.321 ppm;
1.335 ppm), assigned to lactate, also has a significant impact. In addition, correspond-
ing variables in PC loadings found at 3.216 ppm and 3.553 ppm show the characteristic
dispersion-phase signature of the chemical shift variation [35]. The aforementioned vari-
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ables/chemical shifts are very similar to the findings from our previous paper related
to the discrimination of the ‘Schizophrenia’ group of patients (see Figure 1b from [35]).
Nevertheless, a comparison of the corresponding loadings of these two groups of patients
reveals that the area between 4.012 ppm and 4.146 ppm showed the most significant dif-
ferences in their loading shape. Quartet peaks centered around 4.11 ppm (q: 4.089 ppm;
4.104 ppm; 4.117 ppm; 4.132 ppm), which also belong to lactate, show dispersion behavior
(one side peaks at 4.089 ppm and 4.104 ppm have a positive sign, while the other peaks
at 4.117 ppm and 4.132 ppm have a negative sign). Three new peaks that appear also
show positive loading contributions. The first distinctive peak centered at 4.038 ppm, the
additional two at 4.075 ppm, and another overlapped by a lactate quartet at 4.09 ppm.
The correct assignment of these three latter peaks is challenging due to their proximity
to or overlapped with the lactate quartet. The next noticeable difference between these
two loadings is several very sharp negatively signed resonances positioned in the range of
3.324 to 3.546 ppm and 3.785 to 3.942 ppm.

3.1.3. OPLS-DA Models

In any metabonomic study, identifying the molecules that have significant importance
on the metabolomic pathway, which is characteristic of the problem under investigation,
is crucial. Thus, PLS-DA and, subsequently, OPLS-DA regression methods, among oth-
ers, enable the discrimination of diverse classes of samples and, at the same time, the
identification of statistically relevant compounds responsible for such differentiation. In
that sense, understanding how much the loading amplitudes of related samples variable
contribute to a particular model latent variable represents the primary goal of such investi-
gation. However, the method of scaling and centering of the initial data set has a strong
impact on the shape of the resulting loading vector. As a consequence, interpretation can
be distorted because some metabolites with apparent covariation in the loadings are not
really responsible for the discrimination between the different groups or classes [37]. As
explained in the experimental section, different kinds of scaling and centering were tested
during model composing. The OPLS-DA approach, as with all other regression methods,
is sensitive to model complexity. To estimate the relevant number of components in all
presented OPLS-DA models, as exemplified in Figure 2, a 7-fold CV was used. Prediction
capabilities were tested for the chosen number of components with an independent test
data set comprising 33 samples of ‘BD’ and 38 samples belonging to the ‘Control’ class, a
total of 71 samples, as illustrated in Figure 3. The misclassification error, i.e., classification
error rate (proportion of samples which were incorrectly classified) and the class error
(average of false positive rate and false negative rate for class) [48] were used as primary
metrics to compare model performance and the number of chosen components. As a result,
the final number of components was selected as a compromise between misclassification
and class error, and the minimum value of RMSECV was obtained for a different number
of model components.

All OPLS-DA model using mean centering and unit variance scaling was accomplished
using three latent variables (one predictable and two orthogonal). The score plot of the first
predictive LV 1 component (comprising 25.40% of the variance) and the first orthogonal
LV 2 component (comprising 29.43% of the variance) are depicted in Figure 2. The total
captured variance by the OPLS-DA model was 61.74% by the X block and 94.50% by the
Y block of the data set. Back scale projection of the predictive component was given with
color coding according to the loading correlation vector proposed by Wiklund et al. [41],
also known as an S line plot [49].

Predictions based on the CV for the training data set and predicted results for the
test data set for both classes using autoscaling as a preprocessing method for centering
and scaling are presented in Figure 3. The classification threshold for each class model
was calculated using the Bayesian method [50]. For the ‘BD’ and ‘Control’ classes, the
thresholds were determined as 0.5326 and 0.4674, respectively. The obtained accuracy of
1.0 for all models points to perfect class separation.
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Figure 2. (a) Scores plot of the first two LV components of the OPLS-DA model using mean-centering
and unit variance scaling. The BD samples are shown in dark blue, and the control group samples
are shown in light green. (b) Back-scale projection of loading vector LV 1 to coloring coded according
to the absolute value of particular loading weighted by correlation of spectral data set and scores
matrix from the OPLS-DA model.

Figure 3. (a) Classification results for prediction of training (left from blue dot line) and test (right
of the blue dotted line) data set for the ‘BD’ group of patients, and the threshold value of 0.5326.
(b) Classification results for prediction of training (left from blue dot line) and test (right of the blue
dotted line) data set for the ‘Control’ group of individuals and the threshold value of 0.4674. Auto
centering and scaling were performed as data preprocessing.

3.1.4. Variable Importance Signature

To improve visualization of the variable influence in a model, several techniques were
proposed that basically rely on a combination of the covariance and correlation loading
profiles obtained from a projection-based model, e.g., the predictive component tp of an
OPLS-DA model [41]. Cloarec et al. [37] proposed a method for the examination of variable
importance obtained from the OPLS-DA model, using the loadings from auto-scaled
models plotted after back transformation with the respective weight of each variable. Since
autoscaling, as a result, gives the same weight to all the spectral variables, distorted loadings
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and high variance variables have a relatively small influence during modeling. In this way,
a loading plot (covariance) with the same shape as that of an NMR spectrum, presented
on the same plot with important variables for the discrimination between the classes
(correlation), highlighted by the color code, allows a direct interpretation of such loadings
as pseudo-NMR spectra [37]. In a similar manner, combining the contribution or magnitude
(covariance) with the effect and reliability (correlation) for the model variables, with respect
to model component scores, provides an opportunity for a different method of predictive
component loading visualization [41]. Hence, the covariance between score vector tp and
mean-centered data set X corresponds to the back-transformed loading vector of the OPLS-
DA predictive component, when used in conjunction with the correlation between the same
vectors, produced similar results to those of the Cloarec method. Figure 2b depicts the
back-scale projection of loading vector LV 1 now using the absolute value of the correlation
vector for color coding of loadings, also known as the S line plot [49].

3.1.5. VIP Scores

On the other hand, Variable Importance in Projection (VIP) [49], represents the most
frequently used method for variable discrimination (variable discriminatory analysis) in
chemometrics. VIP stands for a weighted combination over all components of the squared
PLS weights, where the weighting that takes place is based on the explained sum of squares
of response variable Y [51]. Since both PLS loadings and weights are strongly influenced
by the method of scaling of the initial data set, a similar effect could be expected to be
reflected in results for VIP scores too. For the same (covariance) loading obtained from
the mean-centered X data matrix [41], the influence of two different centering and scaling
methods on resulting VIP scores is presented in Figure 4.

Figure 4. VIP scores presented on OPLS-DA model back-scale projection of LV1 predicting component
using auto-scale centering and scaling for preprocessing. VIP scores > 1.3 are marked as red dots;
blue dots represent VIP scores ranged between 1.1 to 1.3.

The threshold value of 1.33 (from Figure 4) was determined by removing the VIP
scores of the OPLS-DA model obtained after class centroid centering and scaling from the
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VIP scores values of the OPLS-DA model composed after the data set was auto-scaled. The
maximum value of the remaining set of VIP scores of the auto-scaled model represents
the obtained threshold. The resulting set of VIP scores also only includes values greater
than 1.1 [52]. Variables assigned to the VIP scores in the range between 1.1 and 1.33 should
be considered for further chemical validation. VIP scores greater than 1.33 were regarded
as important for metabolite identification and class discrimination. In such a way, it was
possible to examine the VIP scores for both of these models at the same time and gain
insight into how the scaling method affected the outcomes of the variable importance (in
projection) analysis.

Both methods (color-coded back-scale projection loadings and VIP scores) presented
in Figures 2b and 4 indicate almost identical ranges of chemical shifts inside NMR spectra
as potential biomarker assignment areas for the distinction between two classes of samples:
‘BD’ and ‘Control’. The most pronounced difference could be recognized in the range
3.61–3.73 ppm belonging to sugar molecules, and according to the loadings plot, it is
more relevant to class ‘BD’ than for the ‘Control’ class. Although the doublet assigned to
lactate centered around 1.328 ppm shows smaller VIP scores and correlation loading values,
their corresponding lactate quartet centered at 4.11 ppm deserves particular attention
during chemical validation. The spectral parts between 1.63–1.80 ppm, 2.30–2.37 ppm,
2.45–2.50 ppm, 3.16–3.21 ppm, 3.28–3.35 ppm, and 3.36–3.38 ppm could be clearly identified
from the back-scaled plot in Figure 2b and connected to the class ‘Control’. A nearly
identical conclusion could be derived from the VIP score plot (Figure 4) for scores higher
than 1.3, suggesting that both methods reveal nearly identical variables. It should be
emphasized that findings obtained from the analysis of PCA re-scaled loadings (Figure S5)
indicate almost the same final interpretation.

3.2. NMR Analyses

The results of chemometric analyses with VIP values higher than 1.3 were obtained
using 1D Nuclear Overhauser enhancement spectroscopic data (NOESY1D). In accordance
with these results, the metabolites as potential biomarkers in serum samples of the BD
patients from a Serbian cohort were identified by performing analyses of spectral 2D
NMR data, which was accomplished in TOCSY, JRES, and HSQC experiments. The set of
22 metabolites as serum BD biomarkers are presented with spectral data in Table 2.

Table 2. Metabolites/biomarkers identified in serum samples of the BD patients with spectral data.

No Metabolites/Biomarkers TOCSY Correlations
(δH, ppm)

JRES
((δH (ppm), Multiplicity, J (Hz))

HSQC
(δH/δc (ppm))

1 Lactate/lactic acid 4.10; 1.31 CH3: 1.31, d, 6.98; CH: 4.10 q, 7.0 1.32/22.79, 4.098/71.25

2 Threonine 1.31; 3.56; 4.24
CH3: 1.32, d, overlapped with lactate;
CH: 3.56 d, 5.0; CH2: 4.23 dd, 4.9, 6.6,

overlapped with acylglycerol

1.34/22.54, 3.55/63.42,
4.24

3 Leucine 0.95; 1.71; 3.71 CH3: 0.94, d, 6.24; CH3: 0.95, d, 6.24 0.94/23.41, 0.95/24.72,
1.71/42.70, 3.71

4 Valine 0.98; 1.03; 2.27; 3.62 CH3: 0.97, d, 7.00; CH3: 1.03, d, 7.00;
CH: 3.59 d, 4.39

0.97/19.26, 1.02/20.6,
2.27, 3.59/63.27

5 Glutamine 2.12; 2.44; 3.74 CH2: 2.12 m; CH2: 2.44 m 2.12/29.27, 2.43/33.61,
3.74/57.11

6 Glutamate/glutamic
acid 2.05; 2.35; 3.75 CH2: 2.04, m and 2.11 m 2.0/29.68, 2.34/36.28,

3.74/57.11
7 Citrate/citric acid 2.51; 2.68 CH2: 2.51 d, 16.0; CH2: 2.68 d, 16.0 -

8 Aspartate/aspartic acid 2.68; 2.80; 3.88 CH2: 2.66, dd, 8.8, 17.5 and 2.80, dd
3.8, 17.4 3.80/54.56

9 Alanine 1.46; 3.77 CH3: 1.46, d, 7.26 3.76/53.21

10 3-Hydroxybutyric acid 1.19; 2.34; 4.12 CH3: 1.19 d, 6.4; CH2: 2.40, dd, 7.2,
14.4 and 2.29 dd, 6.4, 14.4 -
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Table 2. Cont.

No Metabolites/Biomarkers TOCSY Correlations
(δH, ppm)

JRES
((δH (ppm), Multiplicity, J (Hz))

HSQC
(δH/δc (ppm))

11 Gamma-aminobutyric
acid 1.9; 3.03 CH2: 3.04, t, 7.6 -

12 Choline 3.50; 4.05 CH2: 4.05 m 4.05/58.35

13 Glucose (α + β) 3.40; 3.52; 3.7; 3.75; 5.10;
5.22

CH-4: 3.40 m; CH-2: 3.52 dd, 3.7, 9.7;
CH-3: 3.70 m (overlapped); CH2-6:
3.75 dd, 5.1, 12.0 and 3.83 m; CH-5:

3.82 m; CH-1: 5.22 d, 3.9

-

14 Arginine 4.07; 4.27; 5.20 3.23 t, 6.6; 1.70, m and 1.64, m -
15 Lysine 1.70; 1.89; 3.03; 3.74 1.91 m -

16 2-Hydroxybutyric acid - CH3: 0.88, t, 7.50; CH2: 1.70, m and
1.64, m or arginine -

17 Isoleucine - CH3: 0.92, t, 7.4; CH3: 0.99, d, 7.0; 3.65
d, 4.04 -

18 Serin - CH2: 3.97, dd, 3.8, 12.2 and 3.92, dd
5.7, 12.2; CH: 3.82 overlapped 3.95/62.94, 3.81/59.2

19 Mannose - CH: 3.55 t, 9.4; CH: 3.79 m; CH: 3.84
dd, 2.2, 4.0; CH: 3.95 m; CH: 5.17, d1.4 -

20 Glycerol - CH2: 3.64 and 3.55 m; CH: 3.70 m
(overlapped) 3.63 and 3.55/65.31

21 Tyrosine 6.88; 7.18 CH: 3.96, dd, 5.0, 8.1 or phenylalanine;
Ar: 6.88 and 7.18

3.95/58.78, Ar:
6.88/118.6, 7.18/133.4

22 Phenylalanine 7.30; 7.36; 7.42 Ar: 7.30 m, 7.37 m, 7.41 m Ar: 7.31/132.01,
7.40/131.80

4. Discussion

The NMR-based metabolomic profiling of serum from BD samples of Serbian patients
and healthy controls provided the identification of 22 metabolites as biomarkers panel
for this mental disease (Tables 2 and 3). Threonine, aspartate, gamma-aminobutyric acid
(GABA), 2-hydroxybutyric acid, serine, and mannose were confirmed for the first time in
the BD serum samples by an NMR-based metabolomics study (Figure 5).

Table 3. Metabolites/biomarkers identified in serum samples of Serbian, Brazilian, and Chinese
patients with BD by NMR analyses.

No Metabolites/Biomarkers Serbian Serum
Samples

Brazilian Serum
Samples

Chines Serum
Samples References

1 Lactate/lactic acid + + + [24–27]
2 Threonine + − − -
3 Leucine + + + [24,25,27]
4 Valine + + + [24–27]
5 Glutamine + + + [24–27]

6 Glutamate/glutamic
acid + + + [24–27]

7 Citrate/citric acid + − + [27]

8 Aspartate/aspartic
acid + − − -

9 Asparagine − + − [26]
10 Alanine + + + [24–27]
11 3-Hydroxybutyric acid + − + [27]

12 Gamma-aminobutyric
acid + − − -

13 Choline + + + [24,26,27]
14 Glucose + + + [24,27]
15 Arginine + + − [26]
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Table 3. Cont.

No Metabolites/Biomarkers Serbian Serum
Samples

Brazilian Serum
Samples

Chines Serum
Samples References

16 Lysine + + − [26]
17 2-Hydroxybutyric acid + − − -
18 Isoleucine + + + [25,27]
19 Serin + − − -
20 Mannose + − − -
21 Glycine − + − [25]
22 Glycerol + − + [27]
23 Tyrosine + + − [25]
24 Phenylalanine + + − [25]

25
N-Acetyl-aspartyl-

glutamic
acid

− + − [24,25]

26 N-Acetyl-
phenylalanine − + − [24]

27 Ethanol − + − [25]
28 α-ketoglutaric acid − + − [24]
29 Lipoamide − + − [24,26]
30 Myo-inositol − + + [24–27]
31 Lipids − + − [24–26]
32 Proline − + − [24,26]
33 Glycoprotein lipids − + − [26]
34 Acetate − + + [26,27]
35 α-ketoisovaleric acid − + − [24]
36 Acetoacetate − − + [27]
37 Methionine − − + [27]
38 Guanidinoacetate − − + [27]
39 Uracil − − + [27]
40 Histidine − + + [25,27]
41 Taurine − − + [27]
42 Betaine − − + [27]
43 Acetone − − + [27]

44
2,3-diphospho-D-

glyceric
acid

− + − [25]

45 monoethyl malonate − + − [25]
46 6-hydroxydopamine − + − [25]
47 Acetyl-choline − + + [25,27]
48 Fatty acids − + − [25]
49 Creatine − + + [24,25,27]
50 N-acetyl glycoproteins − − + [27]
51 O-acetyl glycoproteins − − + [27]
52 Pantothenate − − + [27]
53 Dimethylglycine − − + [27]
54 Citrulline − − + [27]
55 Ascorbate − − + [27]
56 HDL − − + [27]
56 Pyruvic acid − − + [27]
58 Oxidized GSH − − + [27]
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Figure 5. Illustration of the main metabolic pathways reported as altered in BD. Glucose (Glc),
Mannose (Man), Glutamine (Gln), Glutamate (Glu), α-ketoglutarate (α-KG), γ-aminobutyric acid
(GABA), Choline, Phosphatidylcholine (PC), Phospholipids (PL), Fatty acids (FA), Branched Chain
Amino Acids (BCAA, such as valine—Val, leucine—Leu, isoleucine—Ile), Cysteine (Cys), Methionine
(Met), Glutathione (GSH), Threonine (Thr), Serine (Ser), Asparagine (Asn), Aspartate (Asp), Aromatic
Amino Acids (AAA, such as phenylalanine—Phe and tyrosine-Tyr), and many metabolic enzymes,
such as glutaminase (GLS1 and GLS2), glutamine synthetase (GLUL), glutamate dehydrogenase
(GLUD), branched chain aminotransferase (BCAT1 and BCAT2), glutamate decarboxylase (GAD),
mannose-phosphate isomerase (MPI), and transporters, such as the transporter of glucose (GLUT),
glutamine (ASCT2), and L-type amino acid transporter 1 (LAT1), are illustrated.

Changes in these biomarkers obviously confirmed the alteration of amino-acids
metabolism, TCA cycle, and glycolysis. When the glucose metabolism is disturbed for
supplying energy, other sources are used by tissues [24–28]. For the first time, our results
showed an alteration of mannose, C-2 epimer of glucose, which also plays a role in energy
generation. Mannose is mostly catabolized by mannose-6-phosphate isomerase (MPI) in
fructose-6-phosphate, and it is then used in several metabolic pathways, including gly-
colysis (Figure 5) [53]. Mannose impacts the regulation of calcium signaling by alteration
of neurotransmission and synaptic plasticity. Actually, Xu et al. reported that mannose
induces depressive/anxiety-like behavior and spatial memory impairment in mice [53].
Reported data confirmed a high correlation between serine and threonine metabolism
(Figure 5) and pyruvate metabolism with bipolar disorder [29]. Maes et al. showed signifi-
cant alteration of serine and threonine in patients with treatment-resistant depression [54].
Yoshima et al. established a significant decrease in the serum level of serine in BD compared
to those in healthy control participants [29]. On the other hand, the level of L-serine in
patients with schizophrenia was increased [55,56], indicating the possibility of the implica-
tion of L-serine as a biomarker in psychiatric disorders. Transamination of branched-chain
amino acids (BCAA) has an important role in the production of GABA in the brain (Fig-
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ure 5). GABA (an established biomarker in our study) is known as a neurotransmitter
affecting common excitatory processes regarding simple receptors that increase the flow
of positive ions by opening ion channels [26]. Additionally, 2-hydroxybutyric acid is an
identified biomarker in this study, obtained by the reduction of alpha-ketobutyrate, which
is produced by amino acid catabolism (threonine and methionine) and glutathione an-
abolism (Figure 5) [35]. Furthermore, 2-hydroxybutyric acid is correlated with deficient
energy metabolism and impaired glucose regulation, causing the rise of enhanced lipid
oxidation and oxidative stress [57]. Moreover, aspartate, a metabolite established in this
research, is involved in the Krebs cycle, indicating an alteration of the TCA cycle in BD [29].
Aspartate, which is catabolized in β-alanine and also across succinyl-AMP byproduct,
is involved in the TCA cycle producing fumarate (Figure 5). Increased concentrations
of urinary 2-hydroxybutyrate [23] and β-alanine [22] were also found in BD patients, as
well as in MDD patients [21] compared to healthy controls, indicating that an increase of
2-hydroxybutyrate levels might be correlated to increased oxidative stress in BD patients.

Nine biomarkers (lactate, alanine, valine, leucine, isoleucine, glutamine, glutamate, glu-
cose, and choline) were previously identified in serum samples of patients from Brazil and
China [24–27], and they are common metabolites for all three origins. These established
biomarkers pointed to altered glycolysis, lipid metabolism, amino acids metabolism, urea cy-
cle, and TCA cycle (Figure 5). Chen et al. identified 36 metabolites that differ in urine samples
of BD patients compared to HC using a combination of GC-MS and NMR [23]. Reported data
pointed out 2,4,4-dihydroxypyrimidine, one of metabolite in glutamine anabolism, as a highly
accurate BD urinary biomarker indicating alteration of glutamine metabolism [21–23]. In ad-
dition to 2,4-dihydroxypyrimidine, azelaic acid, β-alanine, and pseudouridine were identified
as other urinary potential biomarkers in BD [22,23]. Tasic et al. [24–26] established a set of
33 biomarkers based on 1D and 2D NMR analyses (CPMG, HSQC, and HMBC) of a Brazilian
cohort of BD patients’ serum samples (Table 3). Guo et al. [27] analyzed serum samples of BD
patients with non-suicidal self-injury (NSSI) (n = 31) patients with BD without NSSI (n = 46)
and healthy controls by 1D NMR CPMG experiments and obtained 33 serum biomarkers
for BD patients from a Chinese cohort (Table 3). Eight differential biomarkers (HDL, 3-
hydroxybutyric acid, pyruvic acid, oxidized glutathione, glycerol, citrulline, creatinine, and
β-glucose) were found in the serum of BD patients with NSSI and healthy controls impacting
two important metabolic pathways, the urea and glutamate metabolism cycles [27]. On the
other hand, eight metabolites (HDL, pantothenate, alanine, N-acetyl-glycoproteins, glycerol,
dimethylglycine, ascorbate, and valine) in serum samples were confirmed to distinguish
BD patients without NSSI from healthy controls, including glycine and serine metabolism
pathway, and the glucose-alanine cycle [27].

Altered levels of glucose and lactate as a product of glucose catabolism revealed
disturbed energy metabolism in BD patients [24–27], showing an agreement with our
findings. Lan et al. [20] have also obtained increased levels of lactate in post-mortem brain
tissue in BD patients, while Yoshimi et al. [19] pointed to alteration in the citric acid cycle
in serum and CSF in male BD patients. Acetoacetate is a precursor of 3-hydroxybutyric
acid (a biomarker also found in our study) obtained by its reduction (Figure 5), reflecting
the possibility that ketone bodies might turn into an energy source when there is a lack of
sufficient amounts of glucose in BD [35]. All these studies confirmed the important role
of disturbed energy metabolism in the diagnosis of BD patients, and energy insufficiency
might be correlated to the most common depressive symptoms of bipolar disorder [28].
The lipid-metabolism-related molecule found in our work, as well as in Brazilian and
Chinese studies [24–27], was choline (Figure 5). Choline is a main component of lipids
of cell membranes, and it has an important role as a precursor of the neurotransmitter
acetylcholine participating in cholinergic neurotransmission [58]. There is clinical evidence
that lecithin as a choline precursor is reasonably efficient in some patients with mania. Also,
myo-inositol is a sugar that affects the metabolism of phospholipids and phosphoinositide’s
second messenger pathway [26].
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Following our results, altered levels of amino acids (alanine, valine, leucine, isoleucine),
glutamine, and glutamate were also found in Brazilian and Chinese groups [26,27] when
sera of BD patient samples were compared to controls under the different treatments
pointing out disturbance of amino acid metabolism (Figure 5). Pålsson et al. [59] reported
that glutamate and glutamine are well-known biomarkers with increased levels in blood
serum and cerebrospinal fluid (CSF) of BD patients using HPLC with fluorescence detection
and a possible explanation of their enhancement was related to mitochondrial dysfunc-
tion [60]. The BCAAs (valine, leucine, and isoleucine), as well as aromatic amino acids
(AAAs, phenylalanine, and tyrosine), are biomarkers established in this work. BCAAs
are essential amino acids that have the same carrier for their transport into the brain as
aromatic amino acids (AAAs, phenylalanine, tyrosine, and tryptophan) [61]. Therefore, the
rivalry between BCAAs and AAAs might affect the synthesis of some neurotransmitters,
particularly dopamine, norepinephrine, and 5-hydroxytryptamine (serotonin) [61]. There-
fore, the increased levels of BCAAs in the blood can impact neurotransmitter levels in the
brain that influence brain function. Moreover, BCAA transamination has an important role
in the production of glutamate and gamma-aminobutyric acid (GABA) in the brain, as well
as in ammonia detoxification to glutamine in astrocytes (Figure 5).

5. Conclusions
1H-NMR metabolomic profiling in a cohort of Serbian patients with BD pointed out

22 biomarkers for bipolar disorder. Six of these biomarkers (threonine, aspartate, GABA,
2-hydroxybutyric acid, serine, and mannose) were established for the first time in serum
samples of BD patients applying NMR analyses accomplished with chemometrics. NMR-
based metabolomics study of BD patients from Serbia identified nine metabolites: lactate,
alanine, valine, leucine, isoleucine, glutamine, glutamate, glucose, and choline; these results
are the same as previously reported studies in serum samples of BD patients in Brazil and
China, emphasizing their crucial role in the possibility of application as biomarkers for
diagnosis of BD, reliable monitoring of treatment response, and clinical outcomes. The
essential requirement to achieve the universality of the serum biomarkers for BD is to
explore a unified analysis of data of different geographical and ethnic origins, taking into
account larger sample sizes and the effects of medical treatments on BD patients.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo13050607/s1, Figure S1: (a) Standard deviation along all variables
(chemical shifts) in the data set for the BD samples group. (b) Standard deviation and pooled standard
deviation for all variables in the data set considering all samples from both groups (BD and controls)
depending on calculation methods. Arrows in inset plots indicate the ppm range where differences
between these two classes were observed in the data set; Figure S2: (a) PCA score plot of the model
obtained using mean centering and Pareto scaling. Samples rounded by dotted red ellipses from the BD
patient group were also identified on the influence plot as potential outliers. A Hoteling T2 Confidence
limit of 95% was also presented in the plot with the blue dashed line. (b) Loading plot of PC 2 component
using mean centering and Pareto scaling; Figure S3. (a) PCA score plot of the model obtained using
class centroid centering and scaling. Samples marked with a pink color rounded by dotted red ellipses
from the BD group were also identified on the influence plot as potential outliers. (b) Loading plot
of PC1 component using class centroid centering and scaling; Figure S4: (a) Influence plot for PCA
model with class centroid centering and scaling. Three samples from the class ‘BD’ show large Hotelling
T2 reduced values compared to other samples, and one from the class ‘Control’ shows higher values
for both statistics. The reduced Q and T2 are normalized statistics divided by the confidence limit
calculated from each model’s particular data and parameters. (b) PCA score plot of the model obtained
using class centroid centering and scaling after removal of outlier samples. Scores of samples belonging
to the different patients are grouped together and denoted with corresponding symbols and colors
connected by lines among samples of each patient; Figure S5: Loading plot of PC1 component from
model preprocessed by class centroid and centering and PC2 component from model preprocessed by
mean centering and Pareto scaling varimax rotation of initial PCA model loadings. Resulting loadings
are back-transformed (multiplying all values by their respective standard deviation).

https://www.mdpi.com/article/10.3390/metabo13050607/s1
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