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Abstract 
Considering possible applications and scarceness of literature data, Ag-Bi-In 

system was investigated in terms of microstructure, mechanical and electrical properties 

of ternary alloys from an isothermal section at 100 °C. Based on the experimentally 

obtained results hardness and electrical conductivity of all ternary alloys from the 

ternary Ag-Bi-In system at 100 °C were predicted. In addition, the selected isothermal 

section was further thermodynamically assessed and experimentally studied using 

scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), X-ray 

powder diffraction (XRD) analysis and light optical microscopy (LOM). Phase 

transition temperatures of alloys with overall compositions along vertical sections 

x(Ag)=0.5 as well as liquidus temperatures were experimentally determined by DTA. 

The experimentally obtained results were compared with literature data and with the 

results of thermodynamic calculation of phase equilibria based on CALPHAD method 

and corrected data for Ag-In binary system. Calculated liquidus projection, invariant 

equilibria and phase diagram of the Ag-Bi-In ternary system are presented as well. 

Keywords: Ag-Bi-In system; thermodynamic assessment; microstructural analysis; 

hardness; electrical conductivity. 

Introduction 
In the past decade, a lot of research work has been done to find promising free-

lead solder materials [1-4]. According to literature tin based alloys may be an adequate 

replacement for classical lead solders. So far, a quaternary alloy 84Sn-3Ag-3Bi-10In (in 
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wt.%) seem to be the best alternative among the selection of Pb-free solder systems [5]. 

In line with that, in recent years there has been quite a few thermodynamic studies on 

phase diagrams of four ternary systems (Ag-Bi-In [6,7], Ag-Bi-Sn [8,9], Ag-In-Sn 

[10,11] and Bi-In-Sn [12,13]) that make a quaternary Ag-Bi-In-Sn system. 

The ternary Ag-Bi-In system has been previously investigated by Sabbar et al. 

[6], Vassiliev et al. [7], Liu et al. [14] and Kameda and Yamaguchi [15]. In their study 

Sabbar et al. [6] determined enthalpy of formation for alloy samples with compositions 

along six isoplethic sections x(Bi):x(In)=1:4, x(Bi):x(In)=1:2, x(Bi):x(In)=1:1, 

x(Bi):x(In)=62:38, x(Ag):x(Bi)=1:3 and x(Ag):x(In)=1:1 in a temperature range 809 to 

911 K using a high temperature microcalorimeter. As a result, the enthalpy of formation 

of liquid can be correctly represented by the Toop relation over the entire ternary molar 

fraction range. 

Activities of indium in liquid Ag–Bi–In alloys were studied both by Vassiliev et 

al. [7] and Kameda and Yamaguchi [15]. Vassiliev et al. [7] investigated a part of the 

ternary system x(Ag)=0.5 using differential thermal analysis and potentiometric 

measurements in a temperature range 630 K to 850 K. They have determined some 

points of the liquid surface and compared them with the results of potentiometric 

measurements. Kameda and Yamaguchi [15] measured the activities along three 

isoplethic sections x(Bi):x(Ag)=4:1, x(Bi):x(Ag)=1:1 and x(Bi):x(Ag)=1:4 in a 

temperature range 896 to 1297 K and based on obtained results proposed iso-activity 

curves at 1100 and 1200 K. 

Phase diagram of a ternary Ag-Bi-In system was investigated by Liu et al. [14]. 

In the same study two isothermal sections at 200 °C and 300 °C°C, vertical section at 50 

mass% Ag, liquidus surface and calculated surface tension and viscosity of liquid phase 

were reported. Isothermal sections at 200 °C and 300 °C were experimentally studied 

using electron probe microanalysis (EPMA) while the liquid lines and phase transition 

temperatures of the vertical section at 50 mass% Ag were determined by differential 

scanning calorimetry (DSC). Based on experimentally obtained results, thermodynamic 

parameters for ternary liquid phases were assessed. 

To our knowledge, so far Ag-Bi-In ternary system has not been investigated in 

terms of mechanical and electrical properties of ternary alloys from the isothermal 

section at 100 °C. Such properties are rather important from the application point of 

view as they provide direct insight into possible applications of these ternary alloys. 

Besides investigation of mechanical and electrical properties in the current study are 

also given experimental results of DTA analysis for vertical section x(Ag)=0.5, which 

were compared with the data reported by Liu et al. [14]. Moreover, isothermal section at 

100 °C was investigated using SEM-EDS and XRD analysis and a liquidus surface and 

invariant reactions of the ternary Ag-Bi-In system were calculated and presented as 

well. 

Experimental 
All investigated alloy samples were prepared from Ag, Bi, and In with 99.99 at% 

purity in an induction furnace under high-purity argon atmosphere. The average loss of 

mass during melting of the samples was about 2 mass%. The samples selected for 

investigation of isothermal section at 100 °C were placed in evacuated quartz tubes and 

then sealed. After that, the prepared samples were heated to a temperature that is 50 ºC 

higher than the melting point of Ag and then cooled to 100 °C at a cooling rate of 5 
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°C/min. The samples were then annealed at 100 °C for 3 weeks and subsequently 

quenched into an ice/water mixture in order to preserve the obtained phase equilibriums. 

It was found that low melting points of the used metals and fast diffusion rates led to 

equilibrium compositions after applied annealing time (3 weeks). Longer annealing 

times did not provide any further development of microstructure. 

Phase transition temperatures were determined by the DTA method using TA 

Instruments SDT Q600 thermal analyzer. The samples weighing between 10 and 15 mg 

were placed in alumina crucibles and analyzed at a heating rate of 5 K (5 °C)/min. The 

sample masses and heating rates were determined by analysis of a one sample under 

different testing conditions. The measurements were carried out under flowing nitrogen 

atmosphere with an empty alumina crucible as reference material. 

Microstructural analysis was carried out using JEOL (JSM6460) scanning 

electron microscope equipped with Oxford instruments energy dispersive spectrometer 

and using OLYMPUS GX41 inverted light metallographic microscope. 

XRD patterns of the studied samples were recorded on Bruker D2 PHASER 

powder diffractometer fitted out with a dynamic scintillation detector and ceramic Cu 

tube (KFLCu-2K) in a 2 h range of 5 to 75 deg with a step size of 0.02 deg. The patterns 

were analyzed using Topas 4.2 software and ICDD databases PDF2 (2013). 

The hardness of the samples was determined using Brinell hardness tester 

Innovatest Nexus 3001. The microhardness of the phases present in the microstructure 

was determined using Vickers microhardness tester Sinowon Vexus ZHV-1000V by 

applying load of 0.245 N for 20 s. Electrical conductivities of the studied alloy samples 

were measured using Foerster SIGMATEST 2.069 eddy current instrument. 

Phase equilibria were predicted by thermodynamic calculations based on 

CALPHAD (CALculation of PHAse Diagrams) method using Pandat 8.1 software. 

Literature data 
Three constitutive binary systems have been investigated extensively in recent 

years by many research groups [16-21]. However, in case of Ag-Bi and Bi-In binaries 

these investigations have not resulted in any changes of phase diagrams. In contrast, 

investigations performed on binary Ag-In have resulted in some changes of a phase 

diagram. 

Individual intermetallic phases ((Ag3In), (Ag2In), (Ag3In) and AgIn2) were 

initially studied by Weibke [22], Hellner [23], Frevel and Ott [24] and Campbell [25]. 

Even so, the first assessment of an Ag-In phase diagram was carried out by Baren [26]. 

Additional thermodynamic assessment of this system was carried out by Kornenhen and 

Kivilahti [27]. Nevertheless, a close agreement between calculated and experimental 

results with regard to the phase equilibria associated with  phase was not obtained. The 

most recent assessment of an Ag-In phase diagram was done by Moser et al. [28]. Yet, 

in this study the  (bcc) phase was not considered because of a very small solubility and 

also a solubility of Ag in In was not taken into account. In addition, an intermetallic 

compound (Ag2In) was considered as a stoichiometric compound. 

The most complete phase diagram up to now has been described in COST 531 

Lead-free Solders Thermodynamic Database [1]. In data set given in COST 531 

database, primary data for Liquid, Ag (Fcc_A1), ζ(Hcp_A3) and AgIn2 phases were 

taken from Moser et al. [28] while model for  (Ag2In) in CUIN_GAMMA was 



68 Metall. Mater. Eng. Vol 23 (1) 2017 p. 65-82 

 
changed in order to improve necessary solubility. Moreover, in order to correctly model 

the liquidus surface, (Ag3In) phase was also added. The inclusion of ((Ag3In)) phase 

has instigated one extra invariant reaction. A phase diagram of the binary Ag-In system 

calculated using COST 531 data is presented in Fig. 1. 

 
Fig. 1. Calculated phase diagram of the binary Ag-In system [1] 

In contrast to an assessment carried out by Liu et al. [14] in which used 

thermodynamic data for the binary Ag-In system were taken from Moser et al. [28], in 

the current study corrected data for binary Ag-In system from COST 531 database [1] 

were used. This will most probably lead to difference in phase diagrams presented in 

this study to that of Liu et al. [14] and it is to this difference that investigation of ternary 

Ag-Bi-In system is necessary. 

A list of considered phases of the ternary Ag-Bi-In system with their 

corresponding Pearson symbols is presented in Table 1. 

Table 1. Considered phases, their crystallographic data and database names 
Thermodynamic 

database name 
Common name 

Space group 

symbol 

Strukturbericht 

designation 

Pearson’s 

symbol 

LIQUID Liquid - - - 

FCC_A1 (Ag) Fm


3 m A1 cF4 

RHOMBO_A7 (Bi) R


3 m A7 hR2 

TETRAG_A6 (In) I4/mmm A6 tI2 

BIIN BiIn P4/nmms B10 tP4 

BI3IN5 Bi3In5 I4/mcm D81 tI32 

BIIN_BRASS BiIn2 P63/mmc B82 hP6 

TET_ALPHA1 ε I4/mmm A6mod tI2 

BCC_A2  (Ag3In) Pm


3 m A2 cP2 

HCP_A3  (Ag3In) P63/mmc A3 hP2 

AGIN2 AgIn2 I4/mcm C16 tI12 

CUIN_GAMMA  (Ag2In) P


4 3m D81-3 cP52 
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Results and discussion 

The applied investigation techniques were on one hand selected in a manner to 

provide adequate experimental data on which theoretical predictions can be based and 

on the other to provide necessary data for validation of thermodynamic calculations. 

DTA analysis was carried out on the five alloy samples from x(Ag)=0.5 vertical 

section. Experimentally determined phase transition temperatures are given in Table 2 

along with the results of thermodynamic calculations i.e. calculated phase transition 

temperatures. 

Table 2. Comparative presentation of the experimentally determined (DTA) and the 

calculated phase transition temperatures 

Alloy 

composition 

(mass %) 

Phase transition temperatures (°C) 

Invariant reaction and other peak temperature Liquidus temperature 

Experimental Calculated Experimental Calculated 

Ag50Bi10In40 101.2; 282,6 96.1; 277.8 551.6 553.2 

Ag50Bi20In30 113.2; 230.2; 269.1 108.4; 231.7; 268.4 572.4 569.8 

Ag50Bi24.4In25.6 204.8 196.7 568.2 571 

Ag50Bi30In20 233.6; 517.6 231.7; 521.4 571 578 

Ag50Bi40In10 259.4 261.4 604.4 598 

Comparison between calculated vertical section based on data from COST 531 

database [1], experimentally determined phase transition temperatures and literature 

data is given on Fig. 2. 

 
Fig. 2. Predicted vertical section x(Ag)=0.5 of the ternary Ag-Bi-In system compared 

with DTA results from the present study and literature data [14] 

The calculated vertical section (Fig. 2) shows close agreement with the 

experimentally obtained results (DTA) from this study, both for liquidus and solidus 

temperatures. Furthermore, an overall agreement between the calculated phase diagram 
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and the data reported by Liu et al. [14] can be observed as well. Although in the Bi rich 

region there is some discrepancy between calculated and experimentally determined 

temperatures on one side and data given by Liu et al. [14] on the other. 

The calculated isothermal section of the Ag-Bi-In ternary system at 100 ºC is 

presented on Fig. 3. Out of thirteen predicted regions that can be observed in the 

isothermal section at 100 ºC (Fig. 3), nine were further experimentally investigated. 

Five regions were studied using SEM-EDS and XRD analyzes and six by light optical 

microscopy. Apart from the results of the calculations, on Fig. 3 are also marked 

experimentally determined compositions of the investigated alloy samples. The six alloy 

samples marked with Hindu-Arabic numerals (samples 1 to 6) were investigated using 

SEM-EDS and XRD analysis while the samples marked with Roman numerals (I to VI) 

were studied using optical microscopy. 

 

 
Fig. 3. Predicted phase diagram of the Ag-Bi-In ternary system at 100 °C with 

experimentally determined (SEM-EDS) overall alloy and individual phase compositions 

The experimentally determined phase compositions of the studied alloys and the 

chemical compositions of the identified phases are given in Table 3 and compared with 

thermodynamically predicted compositions. 
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Table 3. SEM-EDS results: experimentally determined phase compositions of the 

investigated alloys of the ternary Ag-Bi-In system in comparison with thermodynamic 

predictions 

Sample 

Overall exp. 

composition  

(mass %) 

Coexisting phases Compositions of the phases (mass %) 

Predicted SEM-EDS 
Ag In Bi 

Exp. Cal. Exp. Cal. Exp. Cal. 

1. 

70 Ag 

20 In 

10 Bi 

(Bi) 

 

(Ag) 

(Bi) 

 

(Ag) 

1.47±0.3 

77.96±0.3 

80.21±0.1 

- 

77.09 

80.47 

0.29±0.4 

21.34±0.2 

19.37±0.6 

- 

22.9 

19.53 

98.24±0.7 

0.7±0.4 

0.42±0.1 

100 

0.01 

- 

2. 

40 Ag 

36 In 

24 Bi 

Liquid BiIn 

 

Liquid BiIn 

 

1.79±0.2 

0.33±0.6 

64.42±0.4 

0.3 

- 

65.81 

43.51±0.6 

36.1±0.3 

34.25±0.4 

45.11 

35.46 

34.19 

54.7±0.4 

63.57±0.1 

1.33±0.1 

54.59 

64.54 

- 

3. 

34 Ag 

41 In 

25 Bi 

Liquid  

 

Liquid  

 

1.94±0.3 

63.25±0.3 

0.32 

65.8 

46.54±0.5 

35.55±0.7 

45.54 

34.2 

51.52±0.2 

1.2±0.1 

53.14 

- 

4. 

20 Ag 

66 In 

14 Bi 

AgIn2 

Liquid 

AgIn2 

Liquid 

29.56±0.5 

0.62±0.4 

31.63 

0.28 

69.17±0.2 

65.9±0.4 

68.37 

65.04 

1.27±0.3 

33.48±0.3 

- 

34.68 

5. 

48 Ag 

30 In 

22 Bi 

BiIn 

(Bi) 

 

BiIn 

(Bi) 

 

2.09±0.1 

0.48±0.4 

65.97±0.1 

- 

- 

65.97 

33.89±0.5 

0.78±0.1 

32.77±0.8 

35.46 

- 

34.03 

64.02±0.5 

98.74±0.4 

1.32±0.1 

64.54 

100 

- 

6. 

40 Ag 

11 In 

49 Bi 

(Bi) 

 

(Ag) 

(Bi) 

 

(Ag) 

1.35±0.2 

76.84±0.3 

80.23±0.2 

- 

77.09 

80.47 

0.84±0.2 

22.04±0.3 

18.78±0.7 

- 

22.9 

19.53 

97.81±0.4 

1.11±0.1 

0.98±0.2 

100 

0.01 

- 

 

From the results given in Table 3 it can be seen that the presence of all of the 

predicted phases was experimentally confirmed. SEM images of microstructures of the 

six studied alloy samples are presented on Fig. 4. The present phases identified using 

results of energy dispersive spectrometry (EDS) analysis are marked on the presented 

microstructures. 

 

   
1)      2) 
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3)      4) 

   
5)      6) 

Fig. 4. SEM micrographs of the alloy samples: 1) Ag70Bi10In20, 2) Ag40Bi24In36, 3) 

Ag34Bi25In41, 4) Ag20Bi14In66, 5) Ag48Bi22In30, and 6) Ag40Bi49In11 (mass %) 

The alloy samples 1 and 6 belong to a same (Bi)++(Ag) three-phase region, and 

in the both presented microstructures the solid solution (Bi) appears as light colored 

grains, the intermetallic compound  as gray phase and the solid solution (Ag) as a dark 

phase trapped between (Bi) and  grains. The sample 2 belongs to a Liquid+BiIn+ 

three-phase region and the all three predicted phases were detected within the studied 

microstructure. The samples 3 and 4 are from two different two-phase regions. Within 

the microstructures of the both samples liquid phase appears as a light-gray phase while 

the second phase appears as dark-gray grains with well-defined boundaries. The sample 

5 is from BiIn+(Bi)+ three phase region and as expected, the presented microstructure 

(Fig. 4) reveals a solid solution (Bi) phase in which lay BiIn and  phases. 

Phase composition of the studied alloy samples was further analyzed using XRD 

technique and the obtained results are shown in Table 4. 
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Table 4. Results of XRD analysis: identified phases and calculated corresponding 

lattice parameters compared with literature data [23, 29-33] 

S. 

Overall exp. 

 Composition 

 (mass %) 

Coexisting phases Lattice parameters (Å) 

SEM-EDS XRD 
a=b c 

Exp. Ref. Exp. Ref. 

1. 

70 Ag 

20 In 

10 Bi 

(Bi) 

 
(Ag) 

(Bi) 

 
(Ag) 

4.5479(2) 

2.9556(2) 

4.1487(3) 

4.548 [29] 

2.9563 [30] 

4.1497 [31] 

11.8534(3) 

4.7863(2) 

 

11.852 [29] 

4.7857 [30] 

 

2. 

40 Ag 

36 In 

24 Bi 

Liquid 

BiIn 

 

- 

BiIn 

 

- 

4.9732(4) 

9.9276(3) 

 

4.972 [32] 

9.922 [33] 

 

4.8299(5) 

 

 

4.83 [32] 

 

3. 

34 Ag 

41 In 

25 Bi 

Liquid 

 

- 

 

- 

9.9244(3) 

 

9.922 [33] 
  

4. 

20 Ag 

66 In 

14 Bi 

Liquid 

AgIn2 

- 

AgIn2 

- 

6.8703(2) 

 

6.869 [23] 

 

5.6038(6) 

 

5.604 [23] 

5. 

48 Ag 

30 In 

22 Bi 

BiIn 

(Bi) 

 

BiIn 

(Bi) 

 

4.9731(1) 

4.5487(3) 

9.9228(4) 

4.972 [32] 

4.548 [29] 

9.922 [33] 

4.8277(6) 

11.8526(1) 

 

4.83 [32] 

11.852 [29] 

 

6. 

40 Ag 

11 In 

49 Bi 

(Bi) 

 
(Ag) 

(Bi) 

 
(Ag) 

4.5474(5) 

2.9569(1) 

4.1503(3) 

4.548 [29] 

2.9563 [30] 

4.1497 [31] 

11.8596(2) 

4.7863(1) 

11.852 [29] 

4.7857 [30] 

 

As can be seen from Table 4, the obtained results confirm presence of the phases 

determined by SEM-EDS analysis. It can also be said that the determined values of 

lattice parameters for (Bi), , (Ag), BiIn, , AgIn2 phases are in close agreement with 

literature data [23, 29-33]. 

As previously stated, the six alloy samples marked with Roman numerals on Fig. 

3 were studied using optical microscopy. From Fig. 3, it can be seen that all of the six 

samples belong to different regions i.e. the samples I, II, III and V are from three-phase 

regions while the samples IV and VI are from two-phase regions. Microstructures of the 

studied alloy samples are illustrated by metallographic images presented on Fig. 5. In 

line with the thermodynamic predictions in the microstructures of the samples I, II, III 

and V (Fig. 5) three phases can be observed and only two phases in the microstructures 

of the samples IV and VI. According to the results of thermodynamic calculations it can 

be assumed that the observed phases in the microstructure of the alloy sample I are most 

probably (Bi),  and (Ag), in the sample II ((Bi), γ and BiIn phase), in the sample III (L, 

AgIn2 and γ), also in the sample IV ((Bi) and γ), in the sample V (L, AgIn2 and (In)) 

and in the sample VI (AgIn2 and (In)). 
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I) Ag32Bi60In8     II) Ag22Bi56In22 

   
III) Ag36Bi12In52    IV) Ag44Bi34In22 

   
V) Ag16Bi10In74    VI) Ag14Bi4In82 

Fig. 5. Microstructures of the selected alloy samples from the ternary Ag-Bi-In 

system: I) Ag32Bi60In8, II) Ag22Bi56In22, III) Ag36Bi12In52, IV) Ag44Bi34In22, V) Ag16Bi10In74 

and VI) Ag14Bi4In82 (mass %) 

A liquidus surface projection of the ternary Al-Bi-In system predicted by 

thermodynamic calculations is presented in Fig. 6. Two large regions ((Ag) and ) and 

nine smaller primary crystallization fields ((Bi), (In), BiIn, Bi3In5, BiIn2, γ, ε, β and 

AgIn2) can be observed on the predicted liquidus projection. With the purpose of 

making smaller regions more visible enlarged part of the liquidus surface in the vicinity 

of binary Bi-In system is given as an insert in Fig. 6. 
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a)      b) 

Fig. 6. Calculated liquidus projection of the ternary Ag-Bi-In system: a) surface 

of liquidus projection, b) magnified part of the liquidus surface in the vicinity of Bi-In 

binary system 

In comparison to previously defined liquidus projection given by Liu et al. [14], 

some differences can be observed, for instance larger solubility of Ag in γ phase and 

existence of a new phase β. The calculations predict invariant reactions to take place at 

slightly lower temperatures than that reported by Liu et al. [14] and also predict 

existence of a one high temperature invariant reaction P1 (see Table 5) which represents 

formation of β phase. 

According to the obtained results of thermodynamic calculations there are 

altogether nine invariant reactions in the Ag-Bi-In ternary system. The predicted 

invariant reactions are listed in Table 5, three of them are E-type reactions and the other 

six are P-type reactions. 
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Table 5. Predicted invariant reactions in the ternary Ag-Bi-In system 

 
T(°C) Reaction Phase 

Composition (at. %) 
Type 

Ag Bi In 

1. 665.59 L +  ↔ (Ag) +  

L 

 
(Ag) 

 

68.83 

75.75 

80.15 
74.89 

1.51 

0.09 

0.07 
0.14 

29.66 

24.16 

19.78 
24.97 

P1 

2. 255.98 L + (Ag) ↔(Bi) +  

L 

(Ag) 

(Bi) 

 

2.07 
80.85 

- 

77.23 

92.55 
0.16 

99.99 

0.26 

5.38 
18.99 

0.01 

22.51 

P2 

3. 196.78 L +  ↔ (Bi)+  

L 

 
(Bi) 

 

1.27 

70.99 
- 

67.95 

72.21 

0.09 
99.99 

- 

26.52 

28.92 
0.01 

32.05 

P3 

4. 108.47 L ↔ (Bi) + + BiIn 

L 
(Bi) 

 
BiIn 

0.39 

- 

67.38 
- 

52.12 

99.99 

- 
50 

47.49 

0.01 

32.62 
50 

E1 

5. 96.10 L +  ↔ BiIn + AgIn2 

L 

 
BiIn 

AgIn2 

0.42 

67.17 
- 

33 

37.85 

- 
50 

- 

61.73 

32.83 
50 

67 

P4 

6. 89.54 L + (In) ↔AgIn2 +  

L 

(In) 

AgIn2 

 

0.24 

- 
33 

- 

17.03 

7.95 
- 

10.05 

82.73 

92.05 
67 

89.95 

P5 

7. 88.13 L + BiIn ↔ AgIn2 + Bi3In5 

L 

BiIn 

AgIn2 

Bi3In5 

0.26 

- 

33 
- 

34.75 

50 

- 
37.5 

64.99 

50 

67 
62.5 

P6 

8. 87.21 L ↔ AgIn2 + Bi3In5 + BiIn2 

L 

AgIn2 
Bi3In5 

BiIn2 

0.24 

33 
- 

- 

33.45 

- 
37.5 

33.33 

66.31 

67 
62.5 

66.67 

E2 

9. 71.46 L ↔ AgIn2 + BiIn2+  

L 

AgIn2 
BiIn2 

 

0.1 

33 

- 
- 

21.98 

- 

33.33 
15.26 

77.92 

67 

66.67 
84.74 

E3 

 

Information about the hardness of the alloys of the ternary Ag-Bi-In system was 

obtained using Brinell test method. Studied alloy samples were selected from three 

vertical sections Bi-Ag0.25In0.75, Bi-AgIn and Bi-Ag0.75In0.25. The obtained values of the 

Brinell hardness of the studied alloy samples are given in Table 6, along with 

experimentally obtained values for three binary alloys and literature values of hardness 

of the pure elements [34]. 

Based on the experimentally obtained values of Brinell hardness listed in Table 6 

and an appropriate mathematical model iso-lines of hardness were predicted for all 

ternary alloys of the Ag-Bi-In system at 100 °C. 
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Table 6. Brinell hardness of the studied alloy samples from the ternary Ag-Bi-In system 

Brinell hardness HB (MN/m2) 

Mole fraction of components Measured values 
Mean value 

x(Ag) x(Bi) x(In) 1 2 3 

Bi-Ag0.25In0.75 

0.25 0 0.75 65.4 65.5 65.3 65.4 

0.2 0.2 0.6 42.2 42.8 41.6 42.2 

0.15 0.4 0.45 23.1 23.2 23.3 23.2 

0.1 0.6 0.3 33.0 29.8 26.7 29.8 

0.005 0.8 0.15 31.8 35.7 36.0 34.5 

Bi-AgIn 

0.5 0 0.5 62.9 62.5 63 62.8 

0.4 0.2 0.4 27.1 28.4 30.5 28.6 

0.3 0.4 0.3 38.3 42.1 44.7 41.7 

0.2 0.6 0.2 18.6 18.4 18.2 18.4 

0.1 0.8 0.1 25.4 22.4 21.8 23.2 

Bi-Ag0.75In0.25 

0.75 0 0.25 39.5 38.2 38.4 38.6 

0.6 0.2 0.2 19.1 20.1 19.1 19.4 

0.45 0.4 0.15 23.8 21.4 22.8 22.6 

0.3 0.6 0.1 24.8 24.1 23.7 24.2 

0.15 0.8 0.005 26.7 25.4 27.1 26.4 

0 1 0 94.2 94.2 [34] 

1 0 0 24.5 24.5 [34] 

0 0 1 8.83 8.83 [34] 

 

The applied mathematical model was defined using Design Expert v.9.0.3.1 

software package. Out of possible canonical or Scheffe models [35-37] that meet the 

requirements of adequacy a cubic mixture model is recommended: 

 
q q 1 q q 1 q q 2 q 1 q

i i ij i j ij i j i j ijk i j k

i 1 i j j i j j i j j k k

ŷ x x x x x (x x ) x x x
   

    

           
 (1) 

 

The Analysis of variance (ANOVA) confirms the adequacy of the model. The 

determined F-value of the model is 15.086, which implies that the model is significant. 

There is only a 0.01% chance that the ”Model F-Value“ this large could occur due to 

noise. Hence, the final equation of the predictive model in terms of actual components 

is: 

 

HB(MN/m2)==24.99217x(Ag)+74.23516x(Bi)+9.322171x(In)-152.46x(Ag)x(Bi) 

+172.782x(Ag)x(In)-104.323x(Bi)x(In)+92.70894x(Ag)x(Bi)x(In)+ 

105.426x(Ag)x(Bi)(x(Ag)-x(Bi))-196.725x(Ag)x(In)(x(Ag)-x(In))-

73.8202x(Bi)x(In)(x(Bi)-x(In))             (2) 

 

Iso-lines contour plot of the Brinell hardness of the alloys from the Ag-Bi-In 

system at 100 °C defined by equation 2 is presented on Fig. 7. 
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Fig. 7. Iso-lines of Brinell Hardness for alloys of the ternary Ag-Bi-In system at 

100 °C 

 

The same alloy samples were used for electrical conductivity measurements and 

the experimentally determined values together with values of electrical conductivity of 

the pure elements [38] are listed in Table 7. 

Table 7. Electrical conductivities of the selected alloys from the isothermal section at 

100 °C 
Electrical conductivity (MS/m) 

Mole fraction of components Measured values   
Mean value 

x(Ag) x(Bi) x(In) 1 2 3 4 

Bi-Ag0.25In0.75 

0.25 0 0.75 14.71 14.70 14.75 14.85 14.75 

0.2 0.2 0.6 1.853 1.850 1.839 1.804 1.837 

0.15 0.4 0.45 0.769 0.791 0.768 0.735 0.766 

0.1 0.6 0.3 0.988 0.981 0.981 0.981 0.983 

0.05 0.8 0.15 0.332 0.301 0.307 0.296 0.309 

Bi-AgIn 

0.5 0 0.5 12.13 12.06 11.94 12.12 12.06 

0.4 0.2 0.4 1.919 1.975 2.011 2.201 2.027 

0.3 0.4 0.3 1.323 1.328 1.339 1.354 1.336 

0.2 0.6 0.2 1.941 1.963 1.925 1.933 1.941 

0.1 0.8 0.1 0.441 0.442 0.441 0.443 0.442 

Bi-Ag0.75In0.25 

0.75 0 0.25 19.24 18.26 18.25 18.24 18.50 

0.6 0.2 0.2 4.827 4.835 4.961 4.823 4.862 

0.45 0.4 0.15 1.274 1.291 1.286 1.311 1.291 

0.3 0.6 0.1 1.019 1.074 0.9773 1.039 1.027 

0.15 0.8 0.05 0.4595 0.455 0.4402 0.446 0.4502 

0 1 0 0.769 0.769 [38] 

1 0 0 62 62 [38] 

0 0 1 11.6 11.6 [38] 
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Calculations of electrical conductivity of the alloys from the Ag-Bi-In ternary 

system at 100 °C were carried out in the same manner as the previously mentioned 

Brinell hardness calculations. The final equation of the predictive model in terms of 

actual components is: 

 

σ(MS/m)=61.25589x(Ag)-2.5012x(Bi)+10.85589x(In)-114.163x(Ag)x(Bi)-

101.392x(Ag)x(In)-39.1753x(Bi)x(In)+164.4702x(Ag)x(Bi)x(In)-

82.2624x(Ag)x(Bi)(x(Ag)x(Bi))-113.394x(Ag)x(In)(x(Ag)x(In))+ 

64.05992x(Bi)x(In)(x(Bi)x(In))             (3) 

 

The resulting iso-lines contour plot of the electrical conductivity defined by 

equation 3 is shown on Fig. 8. 

 

Fig. 8. Iso-lines of electrical conductivity of the ternary Ag-Bi-In system at 100 °C 

The ternary alloy samples from isothermal section at 100 °C were further studied 

in terms of hardness of the individual phases. The values of measured Vickers 

microhardness are marked on micrographs presented on Fig. 9. 
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I) Ag32Bi60In8   IV) Ag44Bi34In22 

  
V) Ag16Bi10In74   VI) Ag14Bi4In82 

Fig. 9. Micrographs with marked hardness of phases determined by Vickers test: I) 

Ag32Bi60In8, IV) Ag44Bi34In22, V) Ag16Bi10In74 and VI) Ag14Bi4In82 (mass %) 

Micro Vickers tests were carried out on the same four alloy samples that were 

studied by light optical microscopy. As previously determined, the two samples are 

from three-phase regions and two are from two-phase regions. Although, in the 

microstructure of the sample I three phases were found (, (Bi) and (Ag)), the solid 

solutions (Ag) and (Bi) are mixed together and the hardness measurement for the each 

individual phase was not possible. Nevertheless, it was found that the hardness of the 

mixture of these two solid solutions is in range 18.1 to 21.9 MN/m2. The lower hardness 

values can be ascribed to presence of larger amounts of the solid solution (Ag). The 

third identified phase () appears as small grains dispersed in a matrix of the solid 

solutions (Ag) and (Bi). The measured value of hardness of this phase is in range 25.2 

to 25.4 MN/m2. 

The sample IV belongs to the (Bi)+ two phase region. Considering that its 

microstructure is clearly divided into separate grains i.e. grain boundaries are well 

defined the hardness measurements for individual phases were carried out. Measured 

hardness of the solid solution (Bi) is in range 14.1 to 15.9 MN/m2 whereas hardness of 

the  phase is 39.3 MN/m2. In the microstructures of the samples V and VI presence of a 

solid solution (In) and an intermetallic compound AgIn2 was detected. In addition to 

these two phases in the microstructure of the sample V a liquid phase was detected as 

well. Given that the all three phases have rather small grains hardness measurements for 

the individual phases were not possible. An overall hardness for this sample was found 

to be in a range between 17.1 and 23.4 MN/m2. In case of the sample VI, measured 

values of hardness for the solid solution (In) were from 20.1 to 20.8 MN/m2 and for the 

AgIn2 intermetallic compound from 42.4 to 44.4 MN/m2. 

Conclusions 
Alloys from the ternary Ag-Bi-In system at 100 °C were studied in terms of 

mechanical and electrical properties. In addition, isothermal section at 100 °C liquidus 

surface, invariant reactions and vertical section x(Ag)=0.5 were thermodynamically 

assessed and experimentally investigated. 
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The experimentally obtained results of EDS and XRD analyses support the 

results of thermodynamic calculations as they were found to be in a close agreement 

with the predicted phase diagram at 100 °C. The lattice parameters of the identified 

phases determined using XRD analysis were found to match literature data quite well. 

A close agreement was also obtained between the calculated vertical section 

x(Ag)=0.5 and experimentally obtained results (DTA), both for liquidus and solidus 

temperatures. Also, a good overall agreement with known literature data was obtained. 

Thermodynamic calculations of the liquidus surface based on new data from 

COST 531 database have revealed existence of eleven regions of primary crystallization 

and nine invariant reactions. As expected, despite overall agreement with known 

literature data on liquidus projection some differences were observed e.g. larger 

solubility of Ag in γ phase and existence of a new phase β. Furthermore, the 

calculations predict invariant reactions to take place at slightly lower temperatures than 

stated in literature and also predict existence of the additional high temperature invariant 

P-type reaction, which corresponds to formation of β phase. 

Conducted Vickers micro hardness measurements have provided some additional 

information on hardness of the phases present in the microstructure of the four selected 

alloy samples. The highest value was measured for AgIn2 intermetallic compound 

which was found to be in a range between 42.4 and 44.4 MN/m2. 

Brinell hardness and electrical conductivity were experimentally determined for 

the selected alloys from the three studied vertical sections (Bi-Ag0.25In0.75, Bi-AgIn and 

Bi-Ag0.75In0.25) of the ternary Ag-Bi-In system. Using appropriate mathematical model 

and experimentally obtained results, values of Brinell hardness and electrical 

conductivity for all ternary alloys of the Ag-Bi-In system at 100 °C were predicted. 
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