Institute of Botany, Faculty of Pharmacy¹, and Faculty of Chemistry², University of Belgrade, and Institute for Chemistry, Technology and Metallurgy³, Belgrade, Yugoslavia

Essential oils of flowers and fruits of Athamanta haynaldii Borb. et Üchtr. (Apiaceae)

P. ŽIVANOVIù, D. DJOKOVIò, VLATKA VAJS³, VIOLETA SLAV-KOVSKA¹ BRANISLAVA TODOROVIù and S. MILOSAVLJEVIò

The essential oils of flowers and unripe fruits of Athamanta haynaldii were found to contain, appreciable amounts of a psychotropic aromatic ether myristicin (ca. 39% of oil) in addition to monoterpene and sesquiterpene hydrocarbons. In the essential oil of ripe fruits of A. haynaldii the main component was β-pinene (71.7% of oil).

Genus Athamanta (9 species) occurs commonly throughout south-eastern Europe. In Serbia one can find only one species, i.e. A. haynaldii, in rocky limestone alpine or subalpine areas [1]. This species was analysed with respect to essential oils of flowers and (ripe and unripe) fruits. The plant material originated from the slopes of mountain Kablar (310 m height above sea level) in Ovčar banja gorge (Western Serbia), and was collected during June, July and August 1993.

All essential oil samples were prepared from 10 g air-dried ground flowers and (un)ripe fruits using Likens-Nickerson device for the isolation of volatiles by simultaneous steam distillation/extraction (CH₂Cl₂) [2]. The samples were analysed on a capillary GC and GC/MS and most constituents were identified by comparison of their mass spectra to those from the MS library [3], taking into account the relative retention times. The structure of myristicin was also verified by ¹H NMR data (not shown) of the compound isolated using preparative GC. The results are summarized in the Table.

Table: Constituents of essential oils of Athamanta haynaldii

Compound (identified by GC/MS)		Composition [%]		
(iden	tified by GC, MS)	Flowers	Unripe fruits	Ripe fruits
1	α-Pinene ^a			
2	Camphene	tr	tr	tr
	n-Hexanal	0.3	0.2	tr
4	β-Pinene*	17.3	39.1	71.7
5	Sabinene		tr	0.3
6	β-Myrcene	1.1	1.8	3.4
7	n-Heptanal		0.2	tr
	Limonene	0.4	0.3	0.6
9	β-Phellandrene		tr	0.2
10	1,8-Cineole		0.3	tr
11	2-Hexenal (E)	1.4	0.3	
12 .	y-Terpinene	0.9	0.3	1.1
13	Styrene	0.2	0.1	
14	p-Cymene	0.2	0.2	0.5
15	α-Terpinolene	2.8		
	2-Heptenal (Z)		0.5	
	n-Hexanol	0.2		tr
18	3-Hexen-1-ol (Z)	0.2		
	α-Copaene	0.9	0.3	0.2
	β-Bourbonene	0.8	0.8	0.3
	β-Elemene	0.3	0.3	0.1
22	Caryophyllene*	2.0	2.8	3.8
	α-Humulene ^a	1.2	2.1	1.9
24 (C15H24	21.1	6.4	4.7
	C ₁₅ H ₂₄	2.3	0.3	0.3
	δ-Cadinene	1.2	0.3	tr
27	Elemicin		tr	
28	Myristicin b	39.6	39.1	3.6

tr = trace (<0.1%)

All samples contained the same main constituents (monoterpenic and sesquiterpenic hydrocarbons and the aromatic ether myristicin), but in different relative amounts. In addition, small amounts of linear C_6 - and C_7 -aldehydes and alcohols were detected. While flowers and unripe fruits yielded similar quantities of essential oils (0.04%, calc. per weight of dried plant material), the concentration in ripe fruits was much higher (0.28%). This is mainly due to the highly increased amount of β -pinene (71.7% of oil), the main component among monoterpenes in all samples.

The oil originating from flowers also contained a considerable amount of a sesquiterpene hydrocarbon ($C_{15}H_{24}$, compound 24, Table) exhibiting a mass spectrum almost identical to that of β -cubebene [3, 4]. However, the relative retention of this sesquiterpene, i.e. elution after caryophyllene and α -humulene, was not in favour of β -cubebene structure whose Kovats index (on a polar column) was reported to be smaller in comparison to that of caryophyllene and α -humulene [4].

The presence of aromatic ether myristicin, i.e. 4-methoxy-6-(2-propenyl)-1,3-benzdioxole, the major constituent of the higher boiling fractions of nutmeg and mace oils, was not unusual since it was detected previously in some genera belonging to *Apiaceae* [5]. The biological activities of myristicin, such as psychotropic activity [6] and insecticidal properties [7, 8], have received considerable attention so far. A related aromatic ether elemicin, i.e. 1,2,3-trimethoxy-5-(2-propenyl)-benzene, frequently co-occurring with myristicin was detected (as a trace) in the oil sample originating from the unripe fruits od *A. haynaldii*.

3. Experimental

3.1. Isolation of the essential oils

The analysed essential oils were isolated from 10 g of air-dried ground flowers and (un)ripe fruits of A. haynaldii by means of Likens-Nickerson device [2], using 150 ml H₂O and 7 ml CH₂Cl₂ in course of 2 h. The oil samples, obtained as CH₂Cl₂ solutions were analysed directly by means of GC and GC MS.

3.2. Analytical GC

A Varian model 3400 gas chromatograph, equipped with a split/splittless injector (250 °C) and fused silica capillary column (i.d. 0.25 mm; length, 60 m; Supelcowax) and FID (300 °C), was used for GC and GC/MS measurements. Working conditions; oven temp., starting with isothermal conditions at 50 °C (3 min) and then programming to 220 °C at 10°/min; carrier gas 3 ml H₂ min. Peak areas were calculated by a data station Varian DS-604.

3.3. GC MS

The gas chromatograph was connected via an open split interface and a fused silica capillary (at 250 °C) to the El ion source of a Finnigan MAT 8230 spectrometer, equipped with a PDP 11/74 computer. Working conditions: carrier gas, 2 ml He/min; other GC conditions as in 3.2; MS: ion source, 70 eV. Mass spectral identifications were based on a comparison of the measured spectra to those from the MS library [3].

3.4. Preparative GC

The isolation of myristicin from the essential oil was performed using a Varian Aerograph 920 instrument equipped with TCD (210 °C) and a glass column (i.d. 4 mm, length, 2 m) packed with 10% Carbowax 20M on Chromosorb W (60–80 mesh). Working conditions: injector temp. 220 °C oven temp. 170 °C (isothermal conditions); carrier gas, 25 ml $\rm H_2/min$. Samples (ca. 50 μl of concentrated CH₂Cl₂ solutions) were repeatedly injected and fractions collected at the outlet of the detector in ice-cooled U-tubes.

3.5. HNMR Spectrum of myristicin

¹H NMR spectrum of myristicin was measured in CDCl₃ solution on a Varian FT 80A NMR spectrometer at 80 MHz.

Supported by a grant from the Serbian Ministry of Science and Technology.

References

- 1 Nikolić, V.: Flore de la Republique Socialiste de Serbia, Josifović, M. (Ed.): Vol. 5, p. 260, Academie Serbe des Sciences et des Arts, Beograd 1973
- 2 Maarse, H.; Belz, R.: Handbuch der Aroma Forschung, pp. 21-24, Akademie Verlag, Berlin 1981
- 3 NBS Library Wiley (1984)

^{*} The structure also confirmed by the identity of retention time with that of the authentic sample (coinjection technique). b Isolated by preparative GC and identified by ¹H NMR and MS.