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Abstract 

The nonlinear frequency response (NFR) method is applied for evaluation of possible 

improvement through simultaneous periodic modulation of two inputs of a non-isothermal 

continuously stirred tank reactor (CSTR) in which homogeneous n-th order reaction 

A→product(s) takes place. The two modulated inputs are the concentration of the reactant 

in the feed steam and the temperature of the feed stream. The cross asymmetrical second 

order FRF which correlates the outlet concentration with both modulated inputs is derived 

and analyzed. The optimal phase difference which should be used in order to maximize 

the conversion is determined. The method is tested on three numerical examples of non-

isothermal CSTRs: a) one which is oscillatory stable with strong resonant behavior, b) one 

which is oscillatory stable with weak resonant behavior and c) one which is nonoscillatory 
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stable. Good agreement between the results of the approximate NFR method and the 

results of “exact” numerical integration is obtained except for the reactor with strong 

resonance for forcing frequencies which are close to the resonant frequency and for the 

reactor with weak resonant behavior for forcing frequency equal to the resonant one in 

case of high forcing amplitudes.  
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1. Introduction 

Forced periodic operations of non-isothermal CSTRs have been investigated in the past fifty 

years both for single and two-input modulation (Ritter and Douglas, 1970; Sinčić and Bailey, 

1977; Sterman and Ydstie 1990 a, 1990b, 1991; Lee and Bailey, 1980; Lee et al. 1980; 

Rigopoulos et al., 1988; Chen et al., 1994; Sidhu et al., 2007). The theoretical and 

experimental investigations have shown that, in some cases, significant enhancement in the 

reactor performance can be obtained by forced periodic operation. 

The process improvement caused by periodic modulation of one or more inputs is a 

consequence of the system nonlinearity. The improvements for highly nonlinear system or 

those which exhibit resonance might be significant (Ritter and Douglas, 1970). 

It is possible that multi-input periodic operations improve the steady-state performance even 

when single-input perturbations have negligible or detrimental effect on the system 

performance (Sterman and Ydstie, 1990b). 

The investigations of Parulekar (Parulekar, 2003) demonstrated that the higher the number of 

inputs subject to periodic modulation, the better the process (reactor) performance can be. 

Additionally, in the same theoretical study it was concluded that an increase in the number of 

inputs perturbed led to a broadening of the regions in the operating parameter space where 

forced periodic operations are superior to operation at optimal steady state (Parulekar, 2003). 

In our previous work, we have proposed the nonlinear frequency response (NFR) method for 

identification of candidate systems for process enhancement through periodic operation and 

an approximate estimation of the magnitude of such enhancement. The NFR method, which is 

applicable for weakly nonlinear systems, is based on Volterra series, generalized Fourier 

transform and the concept of higher order frequency response functions (FRFs) (Weiner and 

Spina, 1980). 
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Up to now, we have applied the nonlinear frequency response method to several generic 

examples of forced periodic operations of chemical reactors. In most cases the reactor was an 

isothermal or non-isothermal CSTR with a simple n-th order irreversible chemical reaction:  

A → product(s). 

Inlet concentration (Marković et al., 2008; Petkovska et al., 2010; Nikolić-Paunić and 

Petkovska 2013; Nikolić et al., 2014a), flow-rate (Nikolić-Paunić and Petkovska 2013; 

Nikolić et al., 2014a), inlet temperature and temperature of the cooling/heating medium 

(Nikolić et al., 2014b) were used as periodically modulated inputs, separately (Marković et 

al., 2008; Petkovska et al., 2010; Nikolić et al., 2014a;Nikolić et al. 2014b) or two of them 

simultaneously (Nikolić-Paunić and Petkovska 2013). 

An isothermal CSTR with a simple n-th order heterogeneous reaction with inlet concentration 

modulation (Petkovska et al., 2010) was also investigated, as well as isothermal plug flow 

reactor (PFR) and isothermal dispersed flow tubular reactor (DFTR) with simple n-th order 

reaction and inlet concentration modulation (Marković et al., 2008). 

Recently, we applied the NFR method to analyzing periodically operated non-isothermal 

CSTRs, with single input modulations (Nikolić et al. 2014a, 2014b). In Part I (Nikolić et al., 

2014a), the modulated input was the inlet concentration or flow-rate, and in Part II (Nikolić et 

al. 2014b) it was the temperature of the inlet reaction stream or the temperature of the 

heating/cooling fluid. 

In this manuscript the NFR method is applied for evaluating periodic operations of a non-

isothermal CSTR subject to modulation of two inputs. It is assumed that a simple n-th order 

homogeneous reaction takes place. We analyze the case when the concentration of the inlet 

stream and its temperature are modulated simultaneously. In this way, the database of the 

derived FRFs related to the periodically operated non-isothermal CSTRs is enriched and this 
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manuscript complements our previous papers (Nikolić et al. 2014a, 2014b) where single input 

modulations of the non-isothermal CSTRs were analyzed. 

In the next section are given the basics regarding nonlinear frequency response, in general, 

and the NFR method for fast evaluation of periodic processes. 

2. Nonlinear frequency response method for evaluating periodic processes with 

two modulated inputs 

By definition, frequency response is the quasi-stationary response of a stable system to a 

periodic (sinusoidal or co-sinusoidal) input, imposed around a steady-state (Douglas, 1972). It 

has been widely used in many fields of engineering, in order to investigate and study system 

dynamics. For linear systems the relationship between the system output (the frequency 

response) and the input is well known, the output spectrum Y(jω) being equal to the input 

spectrum X(jω) multiplied by the system's frequency response function (FRF) G(jω) (Lang et 

al., 2007). Unlike linear systems, the relationship between the input and output spectra of 

nonlinear systems is more complicated. One approach to study nonlinear systems in the 

frequency domain is based on the concept of higher order frequency response functions 

(FRFs). This approach extends the linear FRF concept to the nonlinear case for a wide class of 

nonlinear systems which can be described by the Volterra series model (Lang et al., 2007). 

Frequency response of a weakly nonlinear system is a complex periodic function. It contains 

the basic harmonic, which has the same frequency as the input modulation, a DC (non-

periodic) component, and an infinite number of higher harmonics (Douglas, 1972; Weiner 

and Spina, 1980). On the other hand, the nonlinear model G of a weakly nonlinear system in 

the frequency domain can be replaced by an infinite sequence of FRFs of different orders. 

These FRFs are directly related to the DC component and different harmonics of the response 

(Weiner and Spina, 1980). 
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In the case of a weakly nonlinear system with multiple inputs, several sets of FRFs need to be 

defined. Figure 1 represents a block diagram of a weakly nonlinear system with two inputs 

and one output, for which it is necessary to define three sets of FRFs: two of them relating the 

output to each of the inputs, and one set of cross-functions, relating the output to both inputs. 

The third set contains only functions of the second and higher orders (Petkovska and Seidel- 

Morgenstern, 2013). 

 

Figure 1 Block diagram of a weakly nonlinear system with two inputs and one output 

In Figure 1 the following notation is used: Gn,x
n 

and Gn,z
n 

are the n-th order FRFs 

corresponding to the individual inputs x and z, while Gn,x
m

z
n-m 

is the n-th order cross-function, 

with order m regarding the input x and n-m, regarding the input z (Petkovska and Seidel 

Morgenstern, 2013). 

For a weakly nonlinear system with two modulated inputs x and z, the output of the system, y, 

is a sum of the contributions of the modulated inputs x and z separately (via the Gx and Gz 

functions), and the contribution corresponding to the cross-effect of both inputs (via the Gxz 

functions). Each of these contributions can be presented as Volterra series (Petkovska and 

Seidel Morgenstern, 2013). 
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 ( ) ( ) ( ) ( ) ( ) ( ), , ,
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= + + = + +∑ ∑ ∑  

            (1) 

The NFR method for fast evaluation of periodic operations, which is based on the nonlinear 

frequency response analysis of weakly nonlinear systems and the concept of higher order 

FRFs, has been explained in detail in our previous publications (Marković et al. 2008; 

Petkovska et al., 2010; Petkovska and Seidel-Morgenstern, 2013; Nikolić et al., 2014a, 

2014b). The essence of the method is that the time-average performance of a periodic process 

is defined only by the DC component of the system's frequency response, which can be 

approximately estimated by using only the asymmetrical second order FRFs. 

The details about application of the NFR method for systems with two modulated inputs can 

be found in (Nikolić-Paunić and Petkovska, 2013), where it was shown that the interaction of 

two modulated inputs will give the highest contribution to a possible process improvement 

when the two inputs are modulated with equal forcing frequencies. Here, we will repeat the 

main equations and conclusions about this case, as a non-isothermal CSTR with simultaneous 

modulation of the inlet concentration and temperature of the feed stream is in the focus of the 

current manuscript. 

If two inputs (x, z) are periodically modulated co-sinusoidal around a previously established 

steady-state (xs, zs, ys), with the same forcing frequency ω, different forcing amplitudes (A, B) 

and with a phase difference (φ) between them: 

( ) cos( )
s

x t x A tω= +          (2) 

( ) cos( )
s

z t z B tω ϕ= + +          (3) 

the DC components of the output y consists of contributions of the modulations of inputs x 

and z separately and the cross-effect of both inputs 

, , ,DC DC x DC z DC xzy y y y= + +          (4) 
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By taking into account only the contribution of the second order FRFs, the DC components 

corresponding to the individual contributions of the inputs can be approximated by: 

( )
2

, 2,2 ,
2

DC x xx

A
y G ω ω

 
≈ − 

 
         (5) 

( )
2

, 2,
2 ,

2
DC z zz

B
y G ω ω

 
≈ − 

 
         (6) 

The signs of the asymmetrical second order FRFs G2,xx(ω,-ω) and G2,zz(ω,-ω) will define the 

signs of the DC components corresponding to the individual inputs (Marković et al., 2008). 

The DC component which corresponds to the cross-effect of both inputs, taking into account 

only the second order FRF, is approximately:  

( ) ( )( ), 2, 2,, ,
2 2

j j

DC xz xz xz

A B
y e G e G

ϕ ϕω ω ω ω−  
≈ − + −  
  

     (7) 

Considering that G2,xz(ω,-ω) and G2,xz(-ω,ω) are complex conjugates, by further 

transformation, the DC component which corresponds to the cross effect can also being 

written in the following form: 

( ) ( )( ) ( ) ( )( )( ), 2, 2,2 cos , sin ,
2 2

DC xz xz xz

A B
y Re G Im Gϕ ω ω ϕ ω ω

  
≈ − + −  

  
  (8) 

After introducing the total asymmetrical second order cross term G
*
2,xz, which is a function of 

the forcing frequency and the phase difference between the modulated inputs: 

( ) ( )( ) ( ) ( )( )*

2, 2, 2,cos , sin ,xz xz xzG Re G Im Gϕ ω ω ϕ ω ω= − + −     (9) 

the DC component of the cross-effect can be written in the following form: 

*

, 2,2 ( , )
2 2

DC xz xz

A B
y G ω ϕ

  
≈   

  
        (10) 

It is important to notice that the cross-effect of the modulation of two synchronized inputs 

strongly depends on the phase difference between them. As the matter of fact, the cross term 

can always be made negative, if that is desirable (e.g. if the output is defined as the outlet 

reactant concentration), by a proper choice of the phase difference (φ) .  Furthermore, it is 

possible to determine the optimal phase difference for which the first derivative of the cross 
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second order asymmetrical term *

2, /
xz

G ϕ∂ ∂  is equal to zero, and consequently, the cross DC 

term has a minimum. This optimal phase difference is a function of the forcing frequency ω 

(Nikolić-Paunić, Petkovska, 2013): 

( )
( )

2,

2,

( , )

( , )

xz

opt

xz

Im G
arctang

Re G

ω ω
ϕ π

ω ω

 −
= −  − 

       (11) 

Finally, when the two inputs are modulated with equal forcing frequencies (ω), different 

forcing amplitudes (A, B) with a phase difference (φ), the DC component of the output (Eq. 4) 

can be approximately calculated using the single input and cross-asymmetrical second order 

FRFs, using the following expression: 

( ) ( )
2 2

*

2, 2, 2,
2 , 2 , 2 ( , )

2 2 2 2
DC xx zz xz

A B A B
y G G Gω ω ω ω ω ϕ

      
≈ − + − +      

      
  (12) 

The procedure for deriving the higher order FRFs is standard and can be found in (Petkovska 

2001; Petkovska and Marković 2006; Marković et al., 2008; Petkovska et al.,2010; Petkovska 

and Seidel-Morgenstern, 2013). The derivation process is recurrent, i.e., the first order FRFs 

have to be derived first, than the second order FRFs, etc. For this investigation, we limit our 

derivations and analysis to the first order and asymmetrical second order FRFs.  

In our previous publications we applied the NFR method for fast evaluation of chemical 

reactors (Marković et al., 2008; Petkovska et al., 2010; Petkovska and Seidel-Morgenstern 

2013; Nikolić-Paunić and Petkovska 2013; Nikolić et al., 2014a, 2014b). It was explained 

that, for a reaction of the type A→ product(s), when one or more inputs are periodically 

modulated, the difference between the mean outlet concentration of the reactant cA
m 

and the 

corresponding steady-state outlet concentration cA,s ( ,∆ )m

A A s
c c= −  defines whether the 

conversion can be increased by periodic operation. If ∆ 0< , the periodic operation can be 

considered as favorable as it corresponds to increased conversion in comparison to the steady-

state operation (Marković et al., 2008). It is important to point out that the difference ∆ is 

equal to the DC component of the periodic change of the outlet reactant concentration, which 

can approximately be estimated from only the asymmetrical second order FRFs (equation (5) 

or (6) for single input modulation and equation (12) for simultaneous modulation of two 

inputs). 

In principle, the NFR method should be used as a first step for fast screening of possible 

periodic operations, in order to detect processes which should further be investigated 
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experimentally. It is meant to replace long and tedious numerical investigations. The most 

difficult and time consuming step of the NFR method is derivation of the needed FRFs, which 

needs to be performed only once. After that, all computations associated with the NFR 

method are reduced to simple algebra. So, the computational efforts of the NFR method are 

much less that those of the classical numerical investigations, which demand numerical 

integration of coupled sets of nonlinear differential equations. Furthermore, and what is more 

important, the NFR method gives a complete overview of the investigated periodic operation, 

with defined ranges of the forcing parameters (input frequency, amplitude(s) and phase 

differences, for cases of multiple modulated inputs) which should be used in order to obtain a 

favorable periodic operation. This is not possible with the classical numerical method, which 

gives results only for the defined sets of forcing parameters (frequency, amplitude and phase 

difference) for which numerical integrations are performed. 

In this manuscript, we apply the NFR method for analysis of periodic operations of non-

isothermal CSTRs with simple reaction mechanisms, for simultaneous modulation of the inlet 

concentration and inlet temperature. This application can be of great practical importance, as 

it can result with substantial improvement of the reactor performance, even in cases when 

separate modulation of inlet concentration or temperature give only small improvements or 

even reduce the reactor performance. 

When applying the NFR method, the starting point is always the mathematical model of the 

investigated system. Therefore, the mathematical model of a non-isothermal CSTR will be 

presented in the next section. 
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3. Mathematical model of a non-isothermal CSTR with simple reaction 

mechanism 

The mathematical model of a non-isothermal CSTR, in which a homogeneous n-th order 

chemical reaction A→ product(s) takes place, is based on the assumptions that the reactor 

volume is constant and that the temperature of the heating/cooling fluid does not change from 

inlet to outlet. The well-known two nonlinear first order ODEs describing the material and 

energy balances can be found in (Nikolić et al. 2014a). By changing the variables, the model 

can be transformed into dimensionless form, which can be even further transformed, by 

replacing all nonlinear terms with their Taylor series expansions (Nikolić et al. 2014a). Here 

we are giving just the final form, which is convenient for applying the NFR method (Nikolić 

et al. 2014a; Nikolić et al., 2014b): 

 

( )( )( ) ( )( ) ( )
2

2 21
1 Φ 1 1 Φ 1 1 1 1

2 2
i

dC
C C nC n C n n C

d

γ
α α γθ γ θ γ θ

τ

  
= + + + − + + − + + + + − + − +…   

  
 

           (13) 

 

( )( )( ) ( )( ) ( )

( )
2

2 2

1 Φ 1 1 Φ 1 1 1

1
( 1) 1 1

2 2

i

J

d
St St

d

nC n C n n C

θ
β δ θ θ θ

τ

γ
δ θ β γθ γ θ γ θ

= + + − + + − + + − +

  
+ + − + + + + − + − +…   

  

 

           (14) 

In the dimensionless model equations (13) and (14), C and Ci are the dimensionless 

concentrations of the reactant in the reactor and in the inlet stream, respectively, θ and θi are 

the dimensionless temperatures in the reactor and in the inlet stream, θJ is the dimensionless 

temperature of the cooling/heating fluid, Φ is the dimensionless flow-rate and τ is the 

dimensionless time. Definitions of the dimensionless variables are given in Table 1, as well as 

the definition of a dimensionless frequency, which will be used in the frequency domain. 
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Table 1 Definitions of the dimensionless variables 

Inlet concentration of the reactant 
 

, ,

,

A i Ai s

i

Ai s

c c
C

c

−
=  

Outlet concentration of the reactant 
 

,

,

A A s

A s

c c
C

c

−
=  

Inlet temperature 
 

,

,

i i s

i

i s

T T

T
θ

−
=  

Temperature in the reactor 
 s

s

T T

T
θ

−
=  

Temperature of the heating/cooling fluid 
 

,

,

J J s

J

J s

T T

T
θ

−
=  

Flow-rate 
 Φ s

s

F F

F

−
=  

Time 
 

/ s

t

V F
τ =  

Frequency 
 d

s

V

F
ω ω=  

 

For the case of simultaneous periodic modulation of the inlet concentration and the inlet 

temperature the general dimensionless balance equations (13) and (14) of the non-isothermal 

CSTR are reduced to the following model equations: 

 ( ) ( ) ( )
2

2 21
1 1 1

2 2
i

dC
C n C n C n n C

d

γ
α α αγθ α γ θ γ θ

τ

  
= + − + − − − + + − +…  

  
 

            (15) 

 ( ) ( ) ( )
2

2 21
1 1 1

2 2
i

d
St St n C n C n n C

d

θ γ
β δ θ βγ θ β β γ θ γ θ

τ

  
= + + − − + + − − − + + − +…  

  
 

            (16) 

(the dimensionless flow-rate and the temperature of the cooling/heating fluid are equal to zero 

(Φ=0, θJ=0)). 
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In equations (13-16), α, β, γ, δ and St are dimensionless auxiliary parameters, defined in the 

following way: 

1

,
 

A

s

E

RT n

o A s

s

V
k e c

F
α

−
−= , 

,

A

s

E

RT n

R o A s

p s s

H k e c V

c T Fρ

−

=
�

 , 
,w J s

s p s

UA T

F c T
δ

ρ
= , , wA

s s p

UAE
St

RT F c
γ

ρ
= =   

 (17) 

Hereby the Stanton number St is the well know relative cooling intensity. In Table 1 and the 

definitions of the introduced auxiliary parameters (equation 17), cA is the reactant 

concentration, T temperature, F flow-rate, V the reactor volume, ko the preexponential factor 

in the Arrhenius equation, EA activation energy and R the universal gas constant, ∆Hr heat of 

reaction, U the overall heat transfer coefficient, AW the surface area for heat exchange, ρ 

density, cp heat capacity and ωd dimensional frequency. The subscripts are: i for inlet, s for 

steady-state and J for the heating/cooling fluid (fluid in the jacket) (Nikolić et al., 2014a). 

The auxiliary parameters (eq. 17) depend on the physical parameters of the system, and on the 

steady-state values of concentration, temperature, flow-rate and temperature of the 

heating/cooling fluid. 

 

4. Frequency response functions of a non-isothermal CSTR 

4.1. Definitions of FRFs 

When inlet concentration and inlet temperature are periodically modulated, the non-

isothermal CSTR represents a nonlinear system with two modulated inputs and two outputs, 

namely the outlet concentration and temperature. In order to describe the system, it is 

necessary to derive the following six sets of FRFs: 

• Set 1: G1,C(ω), G2,CC(ω,-ω),… - FRFs which correlate the dimensionless outlet 

concentration of the reactant with the modulated dimensionless inlet concentration. 
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• Set 2: F1,C(ω), F2,CC(ω,-ω),… - FRFs which correlate the dimensionless outlet 

temperature with the modulated dimensionless inlet concentration. 

• Set 3: G1,T(ω), G2,TT(ω,-ω),… - FRFs which correlate the dimensionless outlet 

concentration with the modulated dimensionless inlet temperature. 

• Set 4: F1,T(ω), F2,TT(ω,-ω),… - FRFs which correlate the dimensionless outlet 

temperature with the modulated dimensionless inlet temperature. 

• Set 5: G2,CT(ω,-ω), G2,CT(-ω,ω),… - The cross FRFs which correlate the dimensionless 

outlet concentration with the modulated dimensionless inlet concentration and 

temperature. 

• Set 6: F2,CT(ω,-ω), F2,CT(-ω,ω),… - The cross FRFs which correlate the dimensionless 

outlet temperature with the modulated dimensionless inlet concentration and 

temperature. 

Since we are interested in the conversion change, the F-functions, which correlate the outlet 

temperature with the modulated input(s), are not subject of our interest. Still, the F-functions 

need to be derived since they are required in the derivation process of the G-functions. The 

derivation of the F-functions will be provided below, but without their further analysis. 

 

4.2. Derivation of the FRFs 

The basic steps of the procedure of derivation of the frequency response functions are: 

1. The inlet concentration Ci(τ) and the inlet temperature θi(τ) are defined in the form of 

co-sinusoidal functions with equal frequencies and a phase shift between them 

(analogous to Esq. (2) and (3)), 

2. The outlet concentration C(τ) and temperature θ(τ) are expressed in the Volterra series 

form (analogous to eq. (1)), 
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3. The expressions for Ci(τ), θi(τ), C(τ) and θ(τ) are substituted into the corresponding 

dimensionless model equations (15 and16), 

4. The method of harmonic probing is applied to the equations obtained in step 3 (the 

terms with the same amplitude and frequency are collected and equated to zero). For 

the derivation of the first order FRFs, the terms with (A/2)e
jωτ 

 and for the 

asymmetrical second order FRFs the terms with (A/2)
2
e

0
 are collected and equated to 

zero. 

5. The equations obtained in step 4 are solved. 

The first order and asymmetrical second order FRFs for modulation of only the dimensionless 

inlet concentration have been derived in (Nikolić et al., 2014a) and for modulation of the inlet 

temperature in (Nikolić et al. 2014b). Here we are giving just the final expressions of the 

asymmetrical second order FRF which correlates the dimensionless outlet concentration with 

the modulated dimensionless inlet concentration: 

 ( )
( )

2,

11
,

2 1
CC

St
G

n n St St

α
ω ω

α βγ α

+
− = −

+ + + +
 

 
( ) ( ) ( ) ( )

( ) ( )

2 2 22 2 2

2 22 2

1 ( 1 1 2 1 )
 

1 2

n n St n St n

n n St St St n

α ω β γ βγ

α βγ α ω ω βγ α

   + − + + − − + +
   ×

 + + + + − + + + + 

 

           (18) 

and the asymmetrical second order FRF which correlates the dimensionless outlet 

concentration with the modulated dimensionless inlet temperature: 

 

 ( )
( )( )

( )

2

2,

1 11
,

2 1
TT

St St
G

n n St St

αγ β δ
ω ω

α βγ α

+ + + −
− = −

+ + + +
 

 
( ) ( ) ( )

( ) ( )

2 2 2

2 22 2

2 2 4 2

1 2

n n

n n St St St n

γ ω α α αγ γ

α βγ α ω ω βγ α

− − − + + −
×
 + + + + − + + + + 
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           (19) 

 

The final expression for the cross-asymmetrical second order FRF G2,CT(ω,-ω) is given 

below: 

 

( )
( )( )( )

( ) ( )( ) ( )( ) ( )( )
( ) ( )( )( )

2, 2 22 2

2

1 1 1
,

1 1 1 2

1 1 2 1 ( 2 )

CT

n St St
G

n n St n n St St St n

St St n j St

αγ α β δ
ω ω

αβγ α βγ α βγ α ω ω βγ α

α βγ β α ω ω α β

+ + + + −
− =

− + + + + + + + − + + + +

× + + + + + + + + − −

 

            (20) 

Some details of the derivation procedure can be found in the Appendix. 

G2,CT(-ω,ω) is the conjugated complex function of the FRF G2,CT(ω,-ω) .  

The real and imaginary parts of the cross-asymmetrical second order FRF G2,CT(ω,-ω) are: 

 ( )
( )( )( )

( )( )2,

1 1 1
( , )

1 1
CT

n St St
Re G

n n St

αγ α β δ
ω ω

αβγ α βγ

+ + + + −
− =

− + + +
 

 
( ) ( )( )

( )( ) ( )

2

2 22 2

1 1 2 1

1 2

St St n

n n St St St n

α βγ β α ω

α βγ α ω ω βγ α

+ + + + + + +
×

+ + + + − + + + +
 

            (21) 

 ( )( )
( )( ) ( )

( )( )2,

1 1 1
,

1 1
CT

n St St
Im G

n n St

αγ α β δ
ω ω

αβγ α βγ

+ + + + −
− = ×

− + + +
 

 

( )( ) ( )
2 22 2

( 2 )

1 2

St

n n St St St n

ω α β

α βγ α ω ω βγ α

− −

+ + + + − + + + +
 

            (22) 

The final expressions for the cross-asymmetrical second order FRF, which correlates the 

dimensionless outlet concentration with both modulated inputs can be written as: 

( ) ( ) ( )( )2, 2, 2,, ( , ) ,CT CT CTG Re G jIm Gω ω ω ω ω ω− = − + −      (23) 

The total asymmetrical second order cross term (Eq.9) is  
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( ) ( )( ) ( ) ( )*

2, 2, 2,cos , sin ( , )CT CT CTG Re G Im Gϕ ω ω ϕ ω ω= − + −     (24) 

The optimal phase difference as a function of dimensionless forcing frequency, given by Eq. 

(11), after incorporating the real and imaginary parts of the cross-asymmetrical second order 

FRF becomes: 

 
( )

( ) ( )2

2
arctan

1 1 2 1
opt

St

St St n

α β ω
ϕ π

ω α βγ β α

 − −
= −  + + + + + + + 

 

            (25) 

4.3. Stability and oscillatory analysis 

The NFR method is applicable only for stable systems. In (Nikolić et al., 2014a), the stability 

conditions for the investigated system were derived and analyzed in detail. Let us just repeat 

here that the stability is determined by the characteristic equation of the system and its roots. 

For the non-isothermal CSTR defined by model equations (15) and (16) the characteristic 

equation is the following second-order equation (Nikolić et al., 2014a): 

( ) ( )2 2 1 0s s St n n n St Stβγ α α βγ α+ + + + + + + + + =     (26) 

The analysis of the roots of this equation showed that the non-isothermal CSTR will be stable 

if the following conditions are met (Nikolić et al., 2014a): 

 
(2 )

0  
2

ps

n St
A

α βγ+ + +
= − <  

            (27) 

( )1 0
ps

B n n St Stα βγ α= + + + + >   

It was also shown that the system is oscillatory if Aps
2
<Bps, otherwise the system is 

nonoscillatory. If the system is oscillatory, it can exhibit resonant behavior and the resonant 

frequency can also be calculated from the stability parameters Aps and Bps, in the following 

way (Nikolić et al.,2014a): 
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22r ps psB Aω = −           (28) 

It can also be shown that the damping coefficient ξ  of the system can be calculated from the 

stability parameters using the following expression: 

ps

ps

A

B
ξ = −            (29) 

5. Analysis of the signs of the asymmetrical second order functions 

5.1. Asymmetrical second order FRFs G2,CC(ω,-ω) and G2,TT(ω,-ω) 

The sign analysis of the asymmetrical second order FRFs, G2,CC(ω,-ω)and G2,TT(ω,-ω), were 

given in detail in (Nikolić et al., 2014a; Nikolić et al., 2014b). Thus, here we repeat only the 

final results. 

In order to determine the sign of the asymmetrical second order FRF G2,CC(ω,-ω), it is 

necessary to calculate the following auxiliary parameter: 

�� = (�	
�	�)�
(�	
�)�����          (30) 

The asymmetrical second order FRF G2,CC(ω,-ω) can have the same sign in the whole 

frequency range or it can change its sign for a frequency given with the following equation 

�� = �(�	
�	�)���((�	
�)�����)
���        (31) 

if ωC is a real number. 

The results of the sign analysis for G2,CC(ω,-ω), with respect to the reaction order n and the 

calculated auxiliary parameters (nC,ωC) are summarized in Table 2 (Nikolić et al., 2014a). 
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Table 2 A summary of the results of the sign analysis for G2,CC(ω,-ω) (negative sign is 

desirable) (Reproduced from (Nikolić et al., 2014a)) 

Condition Frequency range 
Sign of 

G2,CC(ω,-ω) 

n=0 ∀ω 0 

n<nC and n<0 ∀ω negative 

n<nC and 0<n<1 ∀ω positive 

nC<1 and n=1 ∀ω negative 

n<nC and n>1 
ω<ωC positive 

ω>ωC negative 

n>nC and n<0 
ω<ωC positive 

ω>ωC negative 

n>nC and 0<n<1 
ω<ωC negative 

ω>ωC positive 

�
�� < 1 and n=1 ∀ω positive 

n>nC and n>1 ∀ω negative 

 

In order to determine the sign of the asymmetrical second order FRF connected to the inlet 

temperature perturbation, G2,TT(ω,-ω),the following auxiliary parameters need to be 

calculated: 

���,�� = �(�	�)±����	��	
��         (32) 

The asymmetrical second order FRF G2,TT(ω,-ω) can also have the same sign in the whole 

frequency range or it can change its sign for a certain frequency, defined by the following 

equation:  

�� = ������	�(�	�)��(��)
��         (33) 

if ωT is a real number. 
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The results of the sign analysis for the asymmetrical second order FRF G2,TT(ω,-ω) are given 

in Table 3, depending on the reaction order n and the auxiliary parameters nT1, nT2, ωT and γ. 

(Nikolić et al., 2014b). We assume that nT1<nT2. 

 

Table 3 Results of the sign analysis for G2,TT(ω,-ω) (negative sign is desirable) (Reproduced 

from (Nikolić et al., 2014b)) 

Reaction order, n Sign of (γ-2) 

Forcing frequency,  

ω 

Sign of  

G2,TT(ω,-ω) 

n<nT1 or n>nT2 

positive 

ω<ωT positive 

ω>ωT negative 

negative or zero ∀ω positive 

nT1<n<nT2 

negative 

ω<ωT negative 

ω>ωT positive 

positive or zero ∀ω negative 

n=nT1orn=nT2 

positive ∀ω negative 

negative ∀ω positive 

zero ∀ω zero 

 

5.2. The total asymmetrical second order cross term G
*
2,CT 

The sign of the total asymmetrical second order cross term G
*
2,CT depends on the sign of the 

real and imaginary parts of the asymmetrical second order cross FRF G2,CT(ω,-ω) and the 

phase difference between the two modulated inputs (Eq.24). 

After introducing the definitions of the stability parameter Aps and Bps in Eqs. (21) and (22), 

the real and imaginary parts of G2,CT(ω,-ω) can be rewritten in the following way: 
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 ( )
( )( )( )

2,

1 1 1
( , )

CT

ps

n St St
Re G

B

αγ α β δ
ω ω

+ + + + −
− = −  

 
( ) ( )( )2

2
2 2 2

1 1 2 1

4ps ps

St St n

B A

α βγ β α ω

ω ω

+ + + + + + +

 − + 

 

            (34) 

 ( )( )
( )( ) ( )

2,

1 1 1
,CT

ps

n St St
Im G

B

αγ α β δ
ω ω

+ + + + −
− = −  

 
2

2 2 2

( 2 )

4
ps ps

St

B A

ω α β

ω ω

− −

 − + 

 

            (35) 

We can conclude from Eqs. (24, 34, 35) that the sign of the total cross asymmetrical second 

order term depends on: 

• The parameters that are the characteristics of the system, i.e. the reaction order n and 

auxiliary parameters α, β, γ, δ (Eq. 17) which are functions of the physical 

parameters of the reactor, the kinetics data of the chemical reaction and the steady-

state concentration and temperature, 

• The variables of the periodic operation, i.e., the forcing frequency ω and the phase 

difference between the two modulated inputs φ. 

Since the forcing frequency and the phase difference are manipulated variables of the periodic 

operations, the sign analysis is performed in a way that, for a particular investigated system 

with defined parameters, the forcing frequency and the phase difference are determined for 

which the total cross asymmetrical second order function is negative (G
*
2,CT<0). 

Sign of Re(G2,CT(ω,-ω)) 
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The auxiliary parameters α, γ and δ are always positive, while β can be positive (for 

endothermic reactions) or negative (for exothermic reactions). The stability conditions define 

the signs of stability parameters which have to be Aps<0 and Bps>0 for the system to be stable.  

Considering this, we can conclude that the sign of the real part of the G2,CT(ω,-ω) function 

(Eq. (34)) depends on the reaction order n, the forcing frequency ω and the term  

( ) ( )R 1 1 2 1St St nα βγ β α= + + + + + +E       (36) 

The real part of G2,CT(ω,-ω) changes its sign if εR<0, for a frequency  

0, RCT
ω = −E           (37) 

otherwise it has the same sign in the whole frequency range. 

The results of the sign analysis of Re(G2,CT(ω,-ω)) as a function of the reaction order n, 

auxiliary parameter εR, and forcing frequency are summarized in Table 4. 

Table 4 Results of the sign analysis of the real part of G2,CT(ω,-ω) 

Reaction order, n εR 

Forcing frequency, 

ω 

Re(G2,CT(ω,-ω)) 

zero any 
∀ω 

0 

positive 

positive or zero 
∀ω 

negative 

negative 

ω<ω0,CT positive 

ω=ω0,CT zero 

ω>ω0,CT negative 

negative 

positive or zero 
∀ω 

positive 

negative 

ω<ω0,CT negative 

ω=ω0,CT zero 

ω>ω0,CT positive 

 

Sign of Im(G2,CT(ω,-ω)) 
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From the above mentioned observations and from Eq. (35), it can be concluded that the sign 

of Im(G2,CT(ω,-ω)) depends on the reaction order n and the term  

2I Stα β= − −E           (38) 

The final results of the sign analysis for the imaginary part of FRF G2,CT(ω,-ω), as a function 

of the reaction order n and the sign of the term εI, are given in Table 5. 

 

Table 5 Results of the sign analysis of the imaginary part of G2,CT(ω,-ω) 

Reaction order, n εI Im(G2,CT(ω,-ω)) 

zero any zero 

positive 

zero zero 

positive negative 

negative positive 

negative 

zero zero 

positive positive 

negative negative 

 

Phase difference, φ 

For a particular system we can determine the signs of the real and imaginary parts of the 

asymmetrical cross second order FRF G2,CT(ω,-ω) .If the real part changes sign for a certain 

frequency, the value of that forcing frequency can be calculated from Eq.(37). 

The next step in the analysis is to choose the phase difference which should be used in order 

to ensure the negative sign of the total cross asymmetrical second order term G
*
2,CT. 

The final results for the recommended phase difference which will assure that the cross term 

is negative are given in the Table 6. 
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Table 6 The range of the phase difference which assures negative sign of the cross term G
*
2,CT 

Re(G2,CT(ω,-ω)) Im(G2,CT(ω,-ω)) φ 

positive positive 
-

2

π
π ϕ< < −  

positive negative 
 

2

π
ϕ π< <  

negative positive 
 0

2

π
ϕ− < <  

negative negative 
 0

2

π
ϕ< <  

positive zero 
 π  

zero positive 
 

2

π
−  

negative zero 
 0  

zero negative 
 

2

π
 

 

It should be noted, that on the other hand, the optimal phase difference (Eqs. (11) and (25)), 

will always give the minimal possible value of the total cross second order asymmetrical term. 

Thus, the value of the optimal phase difference φopt will always be in the recommended range 

of the phase difference. 

Sign of the DC component of the outlet concentration 

As concluded previously, it is always possible to achieve that the total asymmetrical second 

order cross term and the corresponding DC component originating from the cross-effect of 

both inputs (CDC,CT) have negative signs, by appropriate choice of the phase difference. 

However, in order to achieve increase of conversion through periodic operation, the total DC 

component of outlet concentration (CDC) needs to be negative (Eq. (12)). Thus, it is necessary 

to consider the sign of the sum of the DC components corresponding to the individuals inputs 

(CDC,C and C,DC,T) and to the cross effect (CDC,CT).  
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If the asymmetrical second order FRFs G2,CC(ω,-ω) and G2,TT(ω,-ω) are both negative, it is 

obvious that simultaneous modulation of both inputs will ensure even higher conversion 

improvement. On the other hand if one of these FRFs is positive, than only evaluation of the 

total DC component can clarify the overall effect of the periodic operation on the reactor 

performance. 

 

6. Numerical examples 

6.1. Definition of the numerical examples 

Simulation of the asymmetrical second order FRFs and the analysis whether, and to which 

extent, it would be possible to increase the conversion in a non-isothermal reactor owing to 

simultaneous modulation of the inlet concentration and inlet temperature is performed 

considering three numerical examples: one which corresponds to oscillatory stabile system 

with strong resonant behavior (Numerical example 1), one which corresponds to oscillatory 

stable system with weak resonant behavior (Numerical example 2) and one which 

corresponds to non-oscillatory stable system (Numerical example 3). 

The model parameters corresponding to these numerical examples are given in Table 7. All 

parameters have the same values for all three numerical examples, except the heat of reaction. 

The steady state point defined with outlet concentration (cA,s), conversion (xA,s) and outlet 

temperature (Ts) as well as the stability parameters (Aps, Bps) (Eq. (27)), the damping 

coefficient (ξ) (Eq. (29)), the resonant frequency (ωr) (if existing) (Eq. (28)) and the 

eigenvalues, are given in Table 8, for all three numerical examples. 

The conversion xA,s is defined in the standard way: 

, ,

,

,

Ai s A s

A s

Ai s

c c
x

c

−
=           (39) 
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Table 7 Model parameters for the numerical examples 

Parameter Value 

Reaction order, n 1 

Volume of the reactor, V [m
3
] 1 

Preexponential factor of the reaction rate constant, ko, [1/min]  
101*10  

Activation energy, EA [kJ/kmol] 69256 

Heat of reaction, ∆Hr [kJ/kmol] 

Numerical example 1 -543920 

Numerical example 2 -271960 

Numerical example 3 -54392 

Heat capacity, 
pcρ

¹

 [kJ/K/ m
3
]  

34.184 10×  

Steady-state flow-rate, Fs [m
3
/min] 1 

Steady-state inlet concentration, cAi,s [kmol/ m
3
] 2 

Steady-state inlet temperature, Ti,s [K] 323 

Steady-state temperature of the coolant, TJ,s [K] 365 

Overall heat transfer coefficient multiplied by the heat transfer area, 

UAW [kJ/K/min] 

27337 

 

Table 8 The steady state concentrations, conversions and temperatures, the stability 

parameters, damping coefficient, resonant frequency and the eigenvalues for the numerical 

examples 

Numerical 

example 

Steady state point 

Aps Bps ξ ωr 
The 

eigenvalues 
cA,s 

[kmol/m3] 
xA,s 

Ts 

[K] 

1 0.3466 0.8267 388.1 -0.709 31.590 0.126 5.53 -0.709 ± 5.576i 

2 0.7356 0.6322 370.5 -2.632 15.495 0.669 1.28 -2.632 ± 2.927i 

3 1.016 0.4920 361.3 -4.343 14.016 1.160 / -2.141, -6.544 

 

Numerical example 1 is identical to the one used for the cases of single inputs modulations 

(Nikolić et al. 2014a, 2014b). The reactor is oscillatory stable (Aps<0 and Bps>0, Aps
2
<Bps), 

with a low damping coefficient ξ=0.126 (Nikolić et al. 2014a). The non-isothermal CSTR 
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defined as Numerical example 1 is highly nonlinear as a consequence of an assumed 

extremely high heat of reaction (ΔHr=-543920kJ/kmol). Also, concerning that damping 

coefficient is quite low, the system is highly oscillatory with pronounced resonant behavior. 

For Numerical example 2 the heat of reaction is 2 times lower than for the system defined as 

Numerical example 1. The non-isothermal CSTR defined in this way is oscillatory stable with 

weak resonant behavior with the damping coefficient ξ=0.669.The increase of the damping 

coefficient for Numerical example 2 in comparison to the Numerical example 1 means that 

the system is less oscillatory. 

Finally, Numerical example 3 corresponds to a non-isothermal CSTR with heat of the reaction 

which is 10 times lower than the heat of the reaction for Numerical example 1 (∆Hr=-54392 

kJ/kmol).The system is stable and non-oscillatory with damping coefficient ξ=1.160. The 

non-isothermal CSTR defined in this way does not exhibit resonant behavior. 

The maximal allowed forcing amplitudes of the inlet concentration and inlet temperature are 

assumed to be the same for all numerical examples, Amax=100%, Bmax=15%. The forcing 

amplitudes are not limited from the aspect of the system stability, but more from the aspect of 

what could be practically realized. E.g. the maximal amplitude of the inlet temperature 

corresponds to absolute maximal change in the inlet temperature of ∆Ti,max=48.5 K (Nikolić et 

al. 2014a, 2014b).  

 

6.2. Simulation of the asymmetrical second order FRFs and the DC component of the 

outlet concentration  
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In this section, the simulation results of the asymmetrical second order FRFs corresponding to 

the single input modulations, as well as the asymmetrical second order cross FRF and the DC 

component of the outlet concentration are presented for each numerical example. 

A graphical representation of the real and imaginary parts of the cross second order 

asymmetrical FRF G2,CT(ω,-ω) as a function of dimensionless forcing frequency is given in 

Figure 2 for all three numerical examples. 

 

Figure 2 The real and imaginary parts of the cross asymmetrical second order FRF G2,CT(ω,-

ω) as a function of dimensionless frequency, for Numerical examples 1, 2 and 3 

 

For Numerical example 1, the real and imaginary part of G2,CT(ω,-ω) both have extensive 

extremes near the resonant frequency (ωr=5.53). For Numerical example 2, the real and 

imaginary parts of G2,CT(ω,-ω) again have extremes near the resonant frequency (ωr=1.28), 
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but not as big as for Numerical example 1. For the non-oscillatory stable non-isothermal 

CSTR, i.e. Numerical example 3, the real part of the cross asymmetrical second order FRF 

G2,CT(ω,-ω) has no extreme values and the imaginary part of this function has a maximum. 

The result of the sign analysis, in accordance with Table 4 and Table 5, as well as the values 

of the auxiliary parameters εR, ω0,CT and εI necessary for the sign analysis, are summarized in 

Table 9, with respect that the chemical reaction is first order (n=1). The results of the sign 

analysis of the real and imaginary parts of the asymmetrical second order cross FRF G2,CT(ω,-

ω) are confirmed with simulation results, presented in Figure 2. 

Table 9 The results of the sign analysis of the real and imaginary parts of G2,CT(ω,-ω), for the 

three numerical examples 

Numerical 

example 
εR ω0,CT 

Forcing 

frequency, 

ω 

Re(G2,CT(ω,-ω)) εI Im(G2,CT(ω,-ω)) φ 

1 -19.63 4.43 

ω<4.43 positive 

-0.65 positive 

 
2

π
π ϕ− < < −  

ω=4.43 zero  
2

π
ϕ = −  

ω>4.43 negative  0
2

π
ϕ− < <  

2 10.70 / ∀ ω negative -4.37 positive  0
2

π
ϕ− < <  

3 13.90 / ∀ ω negative -5.50 positive  0
2

π
ϕ− < <  

 

The phase differences which should be used in order to achieve the negative value of the cross 

term G
*
2,CT  with respect to the signs of real and imaginary parts, according to Table 6, are 

also given in Table 9. 

The optimal phase differences φopt (defined by Eq. (25)), for all three numerical examples, are 

graphically presented in Figure 3. The optimal phase differences are in the ranges defined in 

Table 9. 
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Figure 3 The optimal phase differences as functions of dimensionless frequency, for 

Numerical examples 1, 2 and 3 

The total asymmetrical second order cross term for the optimal phase difference 

G
*

2,CT(φopt,ω), as well as the asymmetrical second order FRFs which correspond to single 

input modulations (G2,CC(ω,-ω) and G2,TT(ω,-ω), are graphically presented in Figures 4(a), 

4(b) and 4(c), for Numerical examples 1, 2 and 3, respectively.  

The asymmetrical second order FRFs which correspond to the single input modulations were 

analyzed and discussed in detail in (Nikolić et al. 2014a, 2014b). Here, we will discuss only 

the phenomena related to simultaneous modulation of both inputs. 
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Figure 4 The second order asymmetrical FRFs corresponding to the single input modulations 

of inlet concentration (G2,CC(ω,-ω)) and inlet temperature (G2,TT(ω,-ω)) and the total cross 

second order asymmetrical cross term, corresponding to the optimal phase difference, 

(G
*
2,CT(φopt,ω)), as functions of the dimensionless forcing frequency, for Numerical examples 

1 (a), 2 (b) and 3 (c) 
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From Figure 4we can conclude the following: 

• Similarly as for the single input modulations (Nikolić et al. 2014a, 2014b), the 

simultaneous modulation of inlet concentration and inlet temperature with high 

frequencies has no effect on the process performance, i.e.  

*

2,lim 0CTG
ω→∞

=          (40) 

• For low forcing frequencies, the total asymmetrical second order cross term has an 

asymptotic value which depends on the reaction order, dimensionless auxiliary 

parameters and the phase difference  

 
( )( )( )*

2, 30

1 1 1
lim cos *

CT R

ps

n St St
G

Bω

αγ α β δ
ϕ ε

→

+ + + + −
= −  

            (41) 

For Numerical example 1, the low-frequency asymptotic value is -2.31, for Numerical 

example 2, -1.99 and for Numerical example 3, -1.49.  

• For Numerical example 1, similarly to the asymmetrical second order FRFs which 

correspond to the single input modulations, the total asymmetrical second order cross 

term G
*
2,CT(φopt,ω) has an extensive minimum close to the resonant frequency 

ωr=5.53, where the highest improvement is expected. The minimal value of 

G
*
2,CT(φopt,ω)=-23.86 is obtained for ω=5.74 (Figure 4(a)).  

• For Numerical example 2, the cross asymmetrical second order term (G
*
2,CT(φopt,ω)) 

has a minimum in the vicinity of the resonant frequency ωr=1.28, but not as extensive 

as for Numerical example 1. The minimal value of G
*
2,CT(φopt,ω)=-3.62 is obtained for 

ω=3.04 (Figure 4 (b)). 
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• For the non-oscillatory non-isothermal CSTR defined as Numerical example 3, the 

total asymmetrical second order cross term G
*
2,CT(φopt,ω)) has no extremes (Figure 4 

(c)). 

• For all three numerical examples, the asymmetrical second order FRF G2,CC(ω,-ω) is 

negative in the whole frequency range (which is in accordance with Table 2), while 

G2,TT(ω,-ω) changes its sign from positive to negative. G2,TT(ω,-ω) is positive for 

ω<ωT and negative for ω>ωT (Eq. 33, Table3). The forcing frequency for which this 

FRF changes its sign is ωT=5.24 for Numerical example 1, ωT=1.82 for Numerical 

example 2 and ωT=0.87 for Numerical example3. 

• The asymmetrical second order cross term for the optimal phase G
*
2,CT(φopt,ω) is, as 

expected, negative in the whole frequency range for all three numerical examples 

(Figures 4(a), 4(b) and 4(c)). 

• For forcing frequencies ω>ωT both asymmetrical second order FRFs corresponding to 

the single input modulations G2,CC(ω,-ω) and G2,TT(ω,-ω) are negative, which 

guaranties that in this frequency range simultaneous modulation of these two inputs 

will results with conversion enhancement, even higher than with single input 

modulations. 

• For ω<ωT, since the asymmetrical second order FRF G2,TT(ω,-ω) is positive, it is 

necessary to evaluate the total DC component of the outlet concentration in order to 

reveal whether improvement is possible in this frequency range. 

The dimensionless DC components of the outlet concentration of the reactant A, as functions 

of dimensionless forcing frequency, are presented in Figure 5, for all three numerical 

examples. Along with the total DC component obtained when the inlet concentration and inlet 

temperature are simultaneously modulated with the optimal phase difference (CDC), the 

contributions to the DC component of the modulations of the inlet concentration (CDC,C) and 
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inlet temperature (CDC,T), separately, are also given. Figure 5 was obtained for forcing 

amplitudes A=50%, B=10%.  

 

Figure 5 The dimensionless DC components of the outlet concentration for single modulation 

of inlet concentration (CDC,C), inlet temperature (CDC,T) and for simultaneous modulation of 

inlet concentration and temperature (CDC) with forcing amplitudes A=50%, B=10% and 

optimal phase difference, for Numerical example 1 (a), 2 (b) and 3 (c) 

 

From Figure 5, it can be concluded that: 
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• For all three numerical examples, it is possible to achieve higher increase of 

conversion when both inputs are periodically modulated with optimal phase 

difference, in comparison to the single input modulations (with same forcing 

amplitudes). 

• Even for forcing frequencies for which it is not possible to achieve higher conversion 

by modulation of the inlet temperature (ω<ωT, G2,TT(ω,-ω)>0), if inlet concentration 

and inlet temperature are simultaneously modulated with forcing amplitudes A=50%, 

B=10% and optimal phase difference, it is possible to achieve increase of conversion. 

This increase of conversion is higher in comparison to the single input modulation of 

inlet concentration. 

• The dimensionless DC component of the outlet concentration for two-input 

modulation (CDC) around the resonant frequency for Numerical example 2 is 

significantly lower that it is for Numerical example 1, around its resonant frequency. 

Nevertheless, the differences between the DC components for Numerical examples 1 

and 2 at low-frequencies are much less significant than around the resonant 

frequencies. The dimensionless DC component of the outlet concentration for 

Numerical example 3 (non-oscillatory CSTR) is lower than the DC components for 

Numerical examples 1 and 2. This means that higher improvement can be expected for 

the highly nonlinear systems, which is in accordance with the previous investigations 

(Ritter and Douglas, 1970). 

 

6.3. Comparison with results obtained by numerical integration  

The conversion increase predicted by application of the NFR method is compared with the 

results obtained by numerical integration of the model equations for the periodic modulation 

of inlet concentration and inlet temperature with optimal phase difference. The model 
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equations were numerically solved in their original, dimensional form (Nikolić et al, 2014a) 

by using a standard Matlab function ode15s. 

The inputs were modulated in co-sinusoidal way around the previously established steady-

state, in the following way: 

( ) ( )( ), , 1 *cosA i Ai s dc t c A tω= +         (42) 

( ) ( )( ), 1 *cosi i s d optT t T B tω ϕ= + +        (43) 

Based on the mean outlet concentration of the reactant A, , m

A
c calculated both from the 

numerical simulations and by applying the NFR method, the conversion of the reactant 

corresponding to the periodic process with simultaneous modulation of the inlet concentration 

and inlet temperature were calculated: 

,

,

,

m

Ai s A

A p

Ai s

c c
x

c

−
=                                                                                                            

(44) 

Than the increase of conversion owing to periodic operation, relative to the conversion in 

steady-state operation, was calculated: 

, ,

,

∆ (%) *100
A p A s

A

A s

x x
x

x

−
=                                                                                   (44) 

The results of numerical integration and of the NFR method are compared for 3 different 

combinations of forcing amplitudes, A=50%, 25% and 10% for inlet concentration 

(corresponding to absolute changes of inlet concentration of 1 kmol/m
3
, 0.5 kmol/m

3
 and 0.2 

kmol/m
3
, respectively) and B=10%, 6% and 3% for inlet temperature (corresponding to 

absolute changes of inlet temperature of 32.3 K, 19.4 K and 9.7 K, respectively) and for 12 

different forcing frequencies, including the resonant frequency for the each numerical 

example (if existing).  

In order to compare the agreement between the results obtained by the NFR method and by 

numerical integration, the relative errors were calculated, in the following way: 
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, ,

,

∆ ∆
(%) *100

∆

A NFRM A num

c

A num

x x

x
δ

−
=         (45) 

In equation (45) the value of the conversion change obtained by numerical simulation is 

considered to be exact. 

Table 10 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 1 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25% ,B=6% 

Input amplitudes 

A=10%, B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -3.14 1.9930 1.9614 -1.58 0.4988 0.4986 -0.04 0.0789 0.0789 0.08 

1 -3.11 2.0577 2.0400 -0.86 0.5177 0.5176 -0.01 0.0816 0.0817 0.11 

2 -3.06 1.9917 2.3179 16.38 0.5786 0.5843 0.99 0.0913 0.0915 0.20 

3 -2.96 1.3976 2.9706 >100 0.5219 0.7393 41.66 0.1095 0.1139 3.96 

4 -2.52 0.7775 4.7280 >100 0.4697 1.1532 >100 0.1498 0.1733 15.69 

5 -0.55 2.1137 16.7432 >100 0.6286 4.3432 >100 0.2718 0.7300 >100 

5.53 -0.32 2.6064 31.8083 >100 1.0774 8.6160 >100 0.5145 1.5431 >100 

6 -0.24 2.8833 26.2170 >100 1.4044 7.2957 >100 0.6703 1.3550 >100 

7 -0.16 3.1206 8.5252 >100 1.6224 2.4610 51.69 0.4450 0.4784 7.52 

8 -0.12 2.8605 3.9032 36.45 1.0729 1.1512 7.30 0.2264 0.2295 1.39 

9 -0.10 2.0949 2.2807 8.87 0.6665 0.6820 2.33 0.1371 0.1381 0.72 

10 -0.08 1.4693 1.5232 3.67 0.4545 0.4598 1.19 0.0936 0.0941 0.50 

 

The results of numerical integration and the corresponding results of the NFR method for 

Numerical example 1 are given in Table 10, for Numerical example 2 in Table 11 and for 

Numerical example 3 in Table 12. In Tables 10-12, the conversion increase and the relative 

error δc are given in percentages. 
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Table 11 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 2 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25% B=6% 

Input amplitudes 

A=10% B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -0.04 6.4231 6.8851 7.19 1.7739 1.8103 2.05 0.3070 0.3080 0.30 

1 -0.36 6.8433 7.6097 11.20 1.9671 2.0359 3.50 0.3534 0.3558 0.67 

1.28 -0.43 7.0787 8.0260 13.38 2.0792 2.1672 4.23 0.3807 0.3840 0.87 

2 -0.54 7.9070 9.2035 16.40 2.4382 2.5508 4.62 0.4644 0.4693 1.05 

3 -0.59 9.1047 9.8570 8.26 2.7675 2.8257 2.11 0.5409 0.5443 0.62 

4 -0.58 8.1281 8.3552 2.79 2.4392 2.4606 0.88 0.4887 0.4905 0.37 

5 -0.55 5.9632 6.0454 1.38 1.8065 1.8169 0.58 0.3703 0.3713 0.26 

6 -0.51 4.1630 4.2038 0.98 1.2770 1.2828 0.45 0.2662 0.2669 0.26 

7 -0.47 2.9576 2.9799 0.75 0.9164 0.9197 0.36 0.1934 0.1939 0.24 

8 -0.44 2.1750 2.1880 0.60 0.6792 0.6812 0.28 0.1447 0.1450 0.21 

9 -0.41 1.6558 1.6638 0.48 0.5202 0.5214 0.24 0.1116 0.1118 0.20 

10 -0.38 1.2993 1.3044 0.39 0.4100 0.4109 0.21 0.0885 0.0886 0.14 

 

 

Table 12 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 3 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25%, B=6% 

Input amplitudes 

A=10%, B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -0.04 4.5015 4.5462 0.99 1.3148 1.3210 0.47 0.2542 0.2551 0.37 

1 -0.35 4.2607 4.3039 1.01 1.2629 1.2693 0.50 0.2494 0.2504 0.41 

2 -0.55 3.6804 3.7055 0.68 1.1172 1.1217 0.40 0.2283 0.2292 0.42 

3 -0.62 3.0319 3.0453 0.44 0.9386 0.9416 0.32 0.1970 0.1978 0.38 

4 -0.63 2.4646 2.4731 0.34 0.7743 0.7763 0.26 0.1656 0.1662 0.34 

5 -0.61 2.0064 2.0125 0.30 0.6371 0.6385 0.22 0.1381 0.1385 0.31 

6 -0.58 1.6453 1.6495 0.26 0.5264 0.5275 0.21 0.1152 0.1155 0.31 

7 -0.54 1.3616 1.3648 0.23 0.4380 0.4389 0.20 0.0965 0.0968 0.29 

8 -0.51 1.1379 1.1405 0.23 0.3679 0.3684 0.11 0.0811 0.0816 0.67 

9 -0.48 0.9610 0.9627 0.17 0.3114 0.3119 0.17 0.0691 0.0694 0.38 

10 -0.45 0.8190 0.8204 0.17 0.2661 0.2665 0.16 0.0593 0.0595 0.35 
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From the results given in Tables 10-12, it can be concluded that: 

• For Numerical example 1, good prediction by the NFR method is obtained only for 

frequencies which are not near to the resonant frequency. For lower forcing 

amplitudes the prediction is good in the wider range of forcing frequencies, closer to 

the resonant one. 

• Numerical example 1 is identical to the numerical example used to test the quality of 

the NFR method for analysis of periodic operations of a non-isothermal CSTR with 

modulation of the inlet concentration (Nikolić el al, 2014a) and inlet temperature 

(Nikolić et al, 2014b), separately. It is important to notice that the quality of the NFR 

prediction of the process enhancement is about the same (the errors are in the same 

range), for the case of simultaneous modulation of both inputs, presented here, and for 

the cases of modulation of single inputs, presented in these references. 

• For Numerical example 2, good prediction by the NFR method is obtained, except for 

the maximal amplitudes (A=50%, B=10%) around the resonant frequency. For the 

forcing amplitudes A=25%, B=6% and A=10%, B=3%, the relative errors are less than 

5% even for forcing frequencies around the resonant one.  

• For Numerical example 3, excellent agreement between the approximate (NFR 

method) and exact (numerical) solutions are obtained in the whole frequency range 

and for every combination of forcing amplitudes, even if they are very high. The 

maximal relative error is 1.01%.  

• The NFR method based on the second order approximation gives better prediction of 

the outlet concentration change for the oscillatory stable non-isothermal CSTR with 

weak resonant behavior (Numerical example 2) in comparison to the oscillatory stable 

non-isothermal CSTR with strong resonant behavior (Numerical example 1), which is 

highly nonlinear. The disagreements which were observed for the non-isothermal 
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CSTRs which exhibit resonant behavior (Numerical examples 1 and 2) disappeared for 

the non-oscillatory non-isothermal CSTR (Numerical example 3). 

 

7. Conclusions 

In this paper the nonlinear frequency response method is used for evaluation of the possible 

improvement of non-isothermal CSTR with simple homogeneous n-th order reaction, for the 

case of simultaneous periodic modulation of two inputs, namely concentration and 

temperature of the feed stream. The method is tested on three numerical examples of non-

isothermal CSTRs: oscillatory stable reactor with strong resonant behavior and therefore 

highly non-linear (Numerical example 1), oscillatory stable reactor with weak resonant 

behavior (Numerical example 2) and non-oscillatory stable reactor (Numerical example 3). 

The main conclusions are that: 

• The NFR method, based on the second order approximation, gives a correct answer 

whether the periodic operation of a non-isothermal CSTR with simultaneous 

modulation of the concentration and temperature of the feed stream is superior to the 

corresponding steady-state one ( the sign of the predicted DC component is correct). 

• The prediction of the process improvement through periodic operation is good, except 

around the resonant frequency, for the highly non-linear systems which exhibit strong 

resonant behavior (Numerical example 1). It should be noticed that the errors of the 

NFR prediction of the periodic operation with simultaneous modulation of the inlet 

concentration and temperature are similar as those obtained for single input 

modulations.  

• By appropriate choice of the phase difference between the two modulated inputs, the 

cross effect of the two modulated inputs can be adjusted in the desired manner. 
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• Simultaneous modulation of the inlet concentration and temperature with optimal 

phase difference can give higher improvement than modulation of the two inputs, 

separately. Furthermore, even when modulation of the inlet temperature worsens the 

process (like for Numerical example 1, at low frequencies), simultaneous modulation 

of the inlet concentration and temperature results with process improvement.  

In summary, we could say that the NFR method based on the second order approximation 

gives satisfactory results for over-damped and under-damped reactors with high and moderate 

damping coefficients, even for high input amplitudes, while it fails for low damping 

coefficients. The next step in our research will be to define exact criteria for the range of 

dumping coefficients for which the method gives reasonable approximations.  This issue is 

directly related to defining the limitimg level of non-linearity and the acceptable range of 

input amplitudes for using the second order approximation and finding in which cases it 

would be necessary to introduce the forth, and possibly higher order FRFs, in order to withden 

that range. These issues need to be analysed together with analysis of convergence of the 

Volterra series expansion for the investigated system.   
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Nomenclature  

A input amplitude 

Aw surface area for heat exchange 

Aps stability parameter 

B input amplitude  

Bps stability parameter 

cA reactant concentration 

cp heat capacity 

C dimensionless concentration of reactant A 

EA activation energy 

F volumetric flow-rate 

Fn n-th order frequency response function which correlates the dimensionless outlet temperature 

with the dimensionless modulated input(s), general 

Gn n-th order frequency response function which correlates the dimensionless outlet 

concentration with the dimensionless modulated input(s), general 

G2,CT
*
 total asymmetrical second order cross term which correlates the dimensionless outlet 

concentration with both dimensionless modulated inputs (inlet concentration and inlet 

temperature) 

ko preexponential factor in Arrhenius equation 

n reaction order 
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R universal gas constant 

St Stanton number 

t time 

T temperature 

U overall heat transfer coefficient 

V volume of the reactor 

x input 

xA conversion of the reactant A 

X dimensionless input 

y output 

Y dimensionless output 

z input 

Greek symbols  

α auxiliary parameter 

β auxiliary parameter 

γ auxiliary parameter 

δ auxiliary parameter 

δc relative error 

εI auxiliary parameter 

εR auxiliary parameter 
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θ dimensionless temperature 

ξ damping coefficient 

ρ density 

τ dimensionless time 

φ phase difference 

φopt optimal phase difference 

ω frequency, general and dimensionless 

ωd dimensional frequency 

ωr resonant frequency 

∆ difference between the time-average and the steady-state outlet concentration 

∆Hr heat of reaction 

Subscripts 

A reactant A 

C, CC modulation of inlet concentration 

CT simultaneous modulation of inlet concentration and temperature 

DC non-periodic term 

i inlet 

J heating/cooling fluid 

m m-th order 

max maximal value 
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n n-th order 

NFR nonlinear frequency response method 

num numerical 

p periodic operation 

s steady-state 

T, TT modulation of the inlet temperature 

x, xx modulation of input x 

z, zz modulation of input z 

xz simultaneous modulation of input x and input z 

Superscripts 

m  mean 

Abbreviations 

CSTR continuous stirred tank reactor 

FRF frequency response function 

NFR nonlinear frequency response 
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APPENDIX 

Derivation of the cross asymmetrical second order FRFs for simultaneous periodical 

modulation of inlet concentration and inlet temperature 

Step 1: Defining the dimensionless inlet concentration and inlet temperature modulation, in the form 

of cosine functions: 

( ) ( )cos
2 2

j j

i

A A
C A e e

υτ υττ υτ −= = +       (A1) 

( ) ( )cos
2 2

ju ju

i

B B
B u e e

τ τθ τ τ −= = +       (A2) 

Step 2: Representing the dimensionless outlet concentration and dimensionless outlet 

temperature in the form of Volterra series: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 1,

2

2, 1, 1,

2

2, 2,

2 2

2 ,
2 2 2

2 , ,
2 2 2

j j

C C

ju ju

CC T T

j u

TT CT

A A
C e G e G

A B B
G e G u e G u

B A B
G u u e G u

υτ υτ

τ τ

υ τ

τ υ υ

υ υ

υ

−

−

+

= + − +…

 
+ − +…+ + − 
 

 
+…+ − +…+ +… 

 

 (A3) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1, 1,

2

2, 1, 1,

2

2, 2,

2 2

2 ,
2 2 2

2 , ,
2 2 2

j j

C C

ju ju

CC T T

j u

TT CT

A A
e F e F

A B B
F e F u e F u

B A B
F u u e F u

υτ υτ

τ τ

υ τ

θ τ υ υ

υ υ

υ

−

−

+

= + −

 
+…+ − +…+ + − 

 

 
+…+ − +…+ +… 

 

 (A4) 

Step 3: Substituting the expressions for the dimensionless inlet concentration (Eq. A1), 

dimensionless inlet temperature (Eq. A2), dimensionless outlet concentration (Eq. A3) and 

dimensionless outlet temperature (Eq. A4), into the appropriate model equations (Eq.15 

and16). 
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Step 4: After applying the method of harmonic probing, i.e. after collecting the terms with 

( )

2 2

j uA B
e

υ θ+ , corresponding to the cross asymmetrical second order FRFs and equating them 

to zero, the following expressions are obtained: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2, 2, 2,

2

1, 1, 1, 1, 1, 1, 1, 1,

, 1 , ,

2 1 ( )

CT CT CT

C T C T C T T C

j u G u n G u F u

F F u n n G G u n G F u n G u F

υ υ α υ αγ υ

α γ γ υ υ γ υ γ υ

+ = − + −

− − + − + +

         (A5) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2, 2, 2,

2

1, 1, 1, 1, 1, 1, 1, 1,

, 1 , ,

2 1 ( )

CT CT CT

C T C T C T T C

j u F u St F u n G u

F F u n n G G u n G F u n G u F

υ υ βγ υ β υ

β γ γ υ υ γ υ γ υ

+ = − + + −

− − + − + +

   (A6) 

Step 5: Solving the equations obtained in step 4, Eq. (A5) and Eq. (A6), leads to the 

expression for the cross asymmetrical second order functions: 

( )
( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2,

2

1, 1, 1, 1, 1, 1, 1, 1,

(1 ( ))
,

1 1

2 1 ( )

CT

C T C T C T T C

St j u
G u

n j u St j u n

F F u n n G G u n G F u n G u F

αβγ α βγ υ
υ

α υ βγ υ αβγ

γ γ υ υ γ υ γ υ

− + + + +
=

+ + + + + + + −

− + − + +

   (A7) 

( )
( )

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2,

2

1, 1, 1, 1, 1, 1, 1, 1,

(1
,

1 1

2 1 ( )

CT

C T C T C T T C

n n j u
F u

n j u St j u n

F F u n n G G u n G F u n G u F

αβ β α υ
υ

α υ βγ υ αβγ

γ γ υ υ γ υ γ υ

− + + +
=

+ + + + + + + −

− + − + +

   (A8) 

After substituting the expressions for the first order FRFs (Nikolić et al., 2014a, 2014b) into 

Eq. (A7) and Eq. (A8) for the cross function for equal input frequencies, the following cross 

asymmetrical second order FRFs are obtained: 

For υ ω=  and u ω= − : 

( )
( )( )( )

( )( )( ) ( )( ) ( )( )
( ) ( )( )( )

2, 2 22 2

2

1 1 1
,

1 1 1 2

1 1 2 1 ( 2 )

CT

n St St
G

n n St n n St St St n

St St n j St

αγ α β δ
ω ω

αβγ α βγ α βγ α ω ω βγ α

α βγ β α ω ω α β

+ + + + −
− =

− + + + + + + + − + + + +

× + + + + + + + + − −

  (A9) 
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( )
( )

( )( )( ) ( )( ) ( )( )
( ) ( )( )( )

2, 2 22 2

2

1 (1 )
,

1 1 1 2

1 1 2 1 ( 2 )

CT

n St
F

n n St n n St St St n

St St n j St

βγ α β δ
ω ω

αβγ α βγ α βγ α ω ω βγ α

α βγ β α ω ω α β

+ + + −
− =

− + + + + + + + − + + + +

× + + + + + + + + − −

  (A10) 

For υ ω= −  and u ω= : 

( )
( )( )( )

( )( )( ) ( )( ) ( )( )
( ) ( )( )( )

2, 2 22 2

2

1 1 1
,

1 1 1 2

1 1 2 1 ( 2 )

CT

n St St
G

n n St n n St St St n

St St n j St

αγ α β δ
ω ω

αβγ α βγ α βγ α ω ω βγ α

α βγ β α ω ω α β

+ + + + −
− =

− + + + + + + + − + + + +

× + + + + + + + − − −

  (A11) 

( )
( )

( )( )( ) ( )( ) ( )( )
( ) ( )( )( )

2, 2 22 2

2

1 (1 )
,

1 1 1 2

1 1 2 1 ( 2 )

CT

n St
F

n n St n n St St St n

St St n j St

βγ α β δ
ω ω

αβγ α βγ α βγ α ω ω βγ α

α βγ β α ω ω α β

+ + + −
− =

− + + + + + + + − + + + +

× + + + + + + + − − −

  (A12) 

The cross asymmetrical second order FRFs ( )2, ,
CT

G ω ω−  and ( )2, ,
CT

G ω ω−  are complex 

conjugates, as well as ( )2, ,
CT

F ω ω−  and ( )2, ,
CT

F ω ω− . 
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Table 1 Definitions of the dimensionless variables 

Inlet concentration of the reactant 
 

, ,

,

A i Ai s

i

Ai s

c c
C

c

−
=  

Outlet concentration of the reactant 
 

,

,

A A s

A s

c c
C

c

−
=  

Inlet temperature 
 

,

,

i i s

i

i s

T T

T
θ

−
=  

Temperature in the reactor 
 s

s

T T

T
θ

−
=  

Temperature of the heating/cooling fluid 
 

,

,

J J s

J

J s

T T

T
θ

−
=  

Flow-rate 
 Φ s

s

F F

F

−
=  

Time 
 

/ s

t

V F
τ =  

Frequency 
 

d

s

V

F
ω ω=  
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Table 2 A summary of the results of the sign analysis for G2,CC(ω,-ω) (negative sign is 

desirable) (Reproduced from (Nikolić et al., 2014a)) 

Condition Frequency range 
Sign of 

G2,CC(ω,-ω) 

n=0 ∀ω 0 

n<nC and n<0 ∀ω negative 

n<nC and 0<n<1 ∀ω positive 

nC<1 and n=1 ∀ω negative 

n<nC and n>1 
ω<ωC positive 

ω>ωC negative 

n>nC and n<0 
ω<ωC positive 

ω>ωC negative 

n>nC and 0<n<1 
ω<ωC negative 

ω>ωC positive 

1
1 

Cn
< and n=1 ∀ω positive 

n>nC and n>1 ∀ω negative 
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Table 3 Results of the sign analysis for G2,TT(ω,-ω) (negative sign is desirable) (Reproduced 

from (Nikolić et al., 2014b)) 

Reaction order, n Sign of (γ-2) 

Forcing frequency,  

ω 

Sign of  

G2,TT(ω,-ω) 

n<nT1 or n>nT2 

positive 

ω<ωT positive 

ω>ωT negative 

negative or zero 
∀ω 

positive 

nT1<n<nT2 

negative 

ω<ωT negative 

ω>ωT positive 

positive or zero 
∀ω 

negative 

n=nT1orn=nT2 

positive 
∀ω 

negative 

negative 
∀ω 

positive 

zero 
∀ω 

zero 
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Table 4 Results of the sign analysis of the real part of G2,CT(ω,-ω) 

Reaction order, n εR 

Forcing frequency, 

ω 

Re(G2,CT(ω,-ω)) 

zero any 
∀ω 

0 

positive 

positive or zero 
∀ω 

negative 

negative 

ω<ω0,CT positive 

ω=ω0,CT zero 

ω>ω0,CT negative 

negative 

positive or zero 
∀ω 

positive 

negative 

ω<ω0,CT negative 

ω=ω0,CT zero 

ω>ω0,CT positive 

 

  



55 

 

 

Table 5 Results of the sign analysis of the imaginary part of G2,CT(ω,-ω) 

Reaction order, n εI Im(G2,CT(ω,-ω)) 

zero any zero 

positive 

zero zero 

positive negative 

negative positive 

negative 

zero zero 

positive positive 

negative negative 
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Table 6 The range of the phase difference which assures negative sign of the cross term G
*
2,CT 

Re(G2,CT(ω,-ω)) Im(G2,CT(ω,-ω)) φ 

positive positive 
-

2

π
π ϕ< < −  

positive negative 
 

2

π
ϕ π< <  

negative positive 
 0

2

π
ϕ− < <  

negative negative 
 0

2

π
ϕ< <  

positive zero 
 π  

zero positive 
 

2

π
−  

negative zero 
 0  

zero negative 
 

2

π
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Table 7 Model parameters for the numerical examples 

Parameter Value 

Reaction order, n 1 

Volume of the reactor, V [m
3
] 1 

Preexponential factor of the reaction rate constant, ko, [1/min]  
101*10  

Activation energy, EA [kJ/kmol] 69256 

Heat of reaction, ∆Hr [kJ/kmol] 

Numerical example 1 -543920 

Numerical example 2 -271960 

Numerical example 3 -54392 

Heat capacity, 
pcρ

¹

 [kJ/K/ m
3
]  

34.184 10×  

Steady-state flow-rate, Fs [m
3
/min] 1 

Steady-state inlet concentration, cAi,s [kmol/ m
3
] 2 

Steady-state inlet temperature, Ti,s [K] 323 

Steady-state temperature of the coolant, TJ,s [K] 365 

Overall heat transfer coefficient multiplied by the heat transfer area, 

UAW [kJ/K/min] 

27337 
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Table 8 The steady state concentrations, conversions and temperatures, the stability 

parameters, damping coefficient, resonant frequency and the eigenvalues for the numerical 

examples 

Numerical 

example 

Steady state point 

Aps Bps ξ ωr 
The 

eigenvalues 
cA,s 

[kmol/m3] 
xA,s 

Ts 

[K] 

1 0.3466 0.8267 388.1 -0.709 31.590 0.126 5.53 -0.709 ± 5.576i 

2 0.7356 0.6322 370.5 -2.632 15.495 0.669 1.28 -2.632 ± 2.927i 

3 1.016 0.4920 361.3 -4.343 14.016 1.160 / -2.141, -6.544 

 

 

Table 9 The results of the sign analysis of the real and imaginary parts of G2,CT(ω,-ω), for the 

three numerical examples 

Numerical 

example 
εR ω0,CT 

Forcing 

frequency, 

ω 

Re(G2,CT(ω,-ω)) εI Im(G2,CT(ω,-ω)) φ 

1 -19.63 4.43 

ω<4.43 positive 

-0.65 positive 

 
2

π
π ϕ− < < −  

ω=4.43 zero  
2

π
ϕ = −  

ω>4.43 negative  0
2

π
ϕ− < <  

2 10.70 / ∀ ω negative -4.37 positive  0
2

π
ϕ− < <  

3 13.90 / ∀ ω negative -5.50 positive  0
2

π
ϕ− < <  
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Table 10 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 1 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25% ,B=6% 

Input amplitudes 

A=10%, B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -3.14 1.9930 1.9614 -1.58 0.4988 0.4986 -0.04 0.0789 0.0789 0.08 

1 -3.11 2.0577 2.0400 -0.86 0.5177 0.5176 -0.01 0.0816 0.0817 0.11 

2 -3.06 1.9917 2.3179 16.38 0.5786 0.5843 0.99 0.0913 0.0915 0.20 

3 -2.96 1.3976 2.9706 >100 0.5219 0.7393 41.66 0.1095 0.1139 3.96 

4 -2.52 0.7775 4.7280 >100 0.4697 1.1532 >100 0.1498 0.1733 15.69 

5 -0.55 2.1137 16.7432 >100 0.6286 4.3432 >100 0.2718 0.7300 >100 

5.53 -0.32 2.6064 31.8083 >100 1.0774 8.6160 >100 0.5145 1.5431 >100 

6 -0.24 2.8833 26.2170 >100 1.4044 7.2957 >100 0.6703 1.3550 >100 

7 -0.16 3.1206 8.5252 >100 1.6224 2.4610 51.69 0.4450 0.4784 7.52 

8 -0.12 2.8605 3.9032 36.45 1.0729 1.1512 7.30 0.2264 0.2295 1.39 

9 -0.10 2.0949 2.2807 8.87 0.6665 0.6820 2.33 0.1371 0.1381 0.72 

10 -0.08 1.4693 1.5232 3.67 0.4545 0.4598 1.19 0.0936 0.0941 0.50 
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Table 11 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 2 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25% B=6% 

Input amplitudes 

A=10% B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -0.04 6.4231 6.8851 7.19 1.7739 1.8103 2.05 0.3070 0.3080 0.30 

1 -0.36 6.8433 7.6097 11.20 1.9671 2.0359 3.50 0.3534 0.3558 0.67 

1.28 -0.43 7.0787 8.0260 13.38 2.0792 2.1672 4.23 0.3807 0.3840 0.87 

2 -0.54 7.9070 9.2035 16.40 2.4382 2.5508 4.62 0.4644 0.4693 1.05 

3 -0.59 9.1047 9.8570 8.26 2.7675 2.8257 2.11 0.5409 0.5443 0.62 

4 -0.58 8.1281 8.3552 2.79 2.4392 2.4606 0.88 0.4887 0.4905 0.37 

5 -0.55 5.9632 6.0454 1.38 1.8065 1.8169 0.58 0.3703 0.3713 0.26 

6 -0.51 4.1630 4.2038 0.98 1.2770 1.2828 0.45 0.2662 0.2669 0.26 

7 -0.47 2.9576 2.9799 0.75 0.9164 0.9197 0.36 0.1934 0.1939 0.24 

8 -0.44 2.1750 2.1880 0.60 0.6792 0.6812 0.28 0.1447 0.1450 0.21 

9 -0.41 1.6558 1.6638 0.48 0.5202 0.5214 0.24 0.1116 0.1118 0.20 

10 -0.38 1.2993 1.3044 0.39 0.4100 0.4109 0.21 0.0885 0.0886 0.14 
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Table 12 Conversion increase due to simultaneous modulation of the inlet concentration and 

temperature, estimated by numerical simulation and by the NFR method, and the relative 

errors, for Numerical example 3 

 

ω φopt 

Input amplitudes 

A=50%, B=10% 

Input amplitudes 

A=25%, B=6% 

Input amplitudes 

A=10%, B=3% 

∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc ∆xA,num ∆xA,NFRM δc 

0.1 -0.04 4.5015 4.5462 0.99 1.3148 1.3210 0.47 0.2542 0.2551 0.37 

1 -0.35 4.2607 4.3039 1.01 1.2629 1.2693 0.50 0.2494 0.2504 0.41 

2 -0.55 3.6804 3.7055 0.68 1.1172 1.1217 0.40 0.2283 0.2292 0.42 

3 -0.62 3.0319 3.0453 0.44 0.9386 0.9416 0.32 0.1970 0.1978 0.38 

4 -0.63 2.4646 2.4731 0.34 0.7743 0.7763 0.26 0.1656 0.1662 0.34 

5 -0.61 2.0064 2.0125 0.30 0.6371 0.6385 0.22 0.1381 0.1385 0.31 

6 -0.58 1.6453 1.6495 0.26 0.5264 0.5275 0.21 0.1152 0.1155 0.31 

7 -0.54 1.3616 1.3648 0.23 0.4380 0.4389 0.20 0.0965 0.0968 0.29 

8 -0.51 1.1379 1.1405 0.23 0.3679 0.3684 0.11 0.0811 0.0816 0.67 

9 -0.48 0.9610 0.9627 0.17 0.3114 0.3119 0.17 0.0691 0.0694 0.38 

10 -0.45 0.8190 0.8204 0.17 0.2661 0.2665 0.16 0.0593 0.0595 0.35 
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Highlights 

• Evaluation of periodic operations of a non-isothermal CSTR based on NFR method. 

• The analysis of a non-isothermal, homogeneous, simple nth order reaction in a CSTR. 

• Simultaneous modulation of inlet concentration and inlet temperature is considered.  

• The optimal phase difference for maximal increase of conversion is defined.  

• The results are tested on three numerical examples (two oscillatory and one non-

oscillatory). 




